Management in Practice

Developing biosecurity plans for non-native species in marine dependent areas: the role of legislation, risk management and stakeholder engagement

Samuel B. Collin1,2 and Rachel J. Shucksmith1,*

1NAFC Marine Centre UHI, Port Arthur, Scalloway, Shetland ZE1 0UN, UK
2Scottish Wildlife Trust, Harbourside, 110 Commercial St., Edinburgh, UK

Author e-mails: Rachel.shucksmith@uhi.ac.uk (RJS), scollin@scottishwildlifetrust.org.uk (SBC)

*Corresponding author

Abstract

The rapid growth of marine trade and associated activities has led to an ever-increasing number of non-native species (NNS) being transported around the globe. Once established, NNS can be further spread by human activities. The spread of NNS is a trans-boundary challenge that must be met through a range of management measures operating over international and local scales. In contrast, the responsibility of managing NNS post-introduction often fall on marine managers working within localised areas of jurisdiction, such as ports and marinas. Here we examine how legislative frameworks, risk management and perception, influence the ability to develop and implement biosecurity planning in an offshore, semi-autonomous island community; the Shetland Islands. We propose a holistic approach to biosecurity management by integrating risk management methodologies into the wider management process of marine spatial planning. The challenges and opportunities created by a bottom-up approach to management are assessed within the context of global, pan-European, national and local management measures (e.g. regulations, treaties and policies). This paper sets out a framework for managing risk in an environment where the actions of many actors are outside the direct control of those tasked with managing the ecological and socio-economic impacts of marine NNS.

Key words: Shetland, invasive, policy, ecosystem-based management, trans-boundary, marine planning

Introduction

Advances in marine technology and the expansion of international trade have broadened the scope for human travel and maritime activity, which, in turn, has led to widespread transportation of marine species around the globe (Carlton 1996; Hulme 2009). The threats created by marine non-native species (NNS)—species that have been artificially introduced to environments outside of their native range (Colautti and MacIsaac 2004)—to marine communities and industries has become a concern for governments, decision makers, industries, and conservationists (Hooper et al. 2005; Mack et al. 2000; Pimentel et al. 2000).

Although the impacts of problematic “invasive” NNS (also referred to as “INNS”, “invasive alien species” or “IAS”) have been known for some time
Developing biosecurity plans in marine dependent areas

(Elton 1958), the process of managing this biosecurity risk is a comparatively new concept in the marine environment. Biosecurity can be defined as the managerial efforts to “prevent harm from both intentional and unintentional introductions of organisms to human health and infrastructure and the environment” (Meyerson and Reaser 2002b: p. 594). The term “biosecurity” was originally used in agricultural and disease contexts, but in recent years has been applied in a more holistic approach to environmental risk management, encompassing, amongst other concerns, NNS (Meyerson and Reaser 2002a).

In the marine environment, the management of NNS is particularly challenging, due, in part, to the large volume and diversity of maritime activity capable of transporting marine species (e.g. Carlton and Geller 1993; Naylor et al. 2001; Weigle et al. 2005; Clarke Murray et al. 2011). The high potential for long and short distance transportation of NNS makes predicting where and when introductions will occur difficult. In most cases, environmental managers are ill prepared for dealing with new NNS detections and non-native populations can establish unimpeded (Simberloff et al. 2005), as seen with the sea squirt Didemnum vexillum Kott, 2002, (Locke et al. 2009).

The risks posed by marine NNS are elevated in coastal regions that contain a diverse range of marine industries and maritime activities, as the potential for NNS introduction is heightened (Bax et al. 2003). The risks associated with marine NNS can be significant and, therefore, biosecurity planning can be regarded as a form of risk management (Lyall and Tait 2004; Mills et al. 2011; Reed and Curzon 2015). In high-risk coastal areas, the implementation of an effective biosecurity plan can prevent and/or control the establishment and spread of unwanted NNS.

The comprehensive and precautionary approach to risk management that forms the basis of biosecurity planning is well suited to NNS management. It focuses on identifying and prioritising risks, and implementing preventative and responsive protocols aimed at reducing, if not eliminating, these risks. This framework provides an opportunity to manage risk in an environment where the actions of many actors are outside the direct control of those tasked with managing the ecological and socio-economic impacts of NNS.

Approaches to biosecurity planning were tested within the semi-autonomous Shetland Islands (herein Shetland) – an archipelago located approximately 160 km north of mainland Scotland. Shetland is a maritime dependent community, with over 75% of economic output directly linked to the sea (Shetland Marine Planning Partnership 2019). Marine industries within Shetland are wide ranging and include: Europe’s largest oil terminal, which receives tankers from North and South America, Africa, and Asia (Shelmerdine 2015), aquaculture, commercial fishing, recreational boating, and wildlife tourism. In addition, the marine environment supports
Developing biosecurity plans in marine dependent areas

a highly diverse range of internationally and nationally important marine species and habitats (Shucksmith et al. 2014), which, in addition to their biodiversity value, support a range of ecosystem services such as supporting commercially important fish and shellfish species, sequestering carbon, and providing coastal protection. Maintaining a healthy, functioning marine ecosystem is essential for ensuring the continued delivery of many of these goods and services to Shetland.

In Shetland, the use of the marine environment is guided by the Shetland Islands’ Marine Spatial Plan (SIMSP) from mean high water springs to the 12 nm limit. The overarching aim of which is to manage marine use and activities to meet the long terms needs of nature and people (NAFC Marine Centre UHI 2014). A policy requiring developers to consider the risks of their proposals on the introduction, spread and management of NNS was first introduced in 2007 and was updated in subsequent editions (NAFC Marine Centre UHI 2014; Shetland Marine Planning Partnership 2019). To support this policy, the NAFC Marine Centre UHI (herein NAFC) initiated an NNS monitoring programme in 2012 to provide a baseline of known NNS in Shetland (Collin et al. 2015). In addition, guidance documents for specific user groups and the wider public were created, covering species identification and “best practice” measures to reduce the risk of introduction and spread of NNS.

In 2015, the SIMSP advisory group identified the need for a Shetland-wide biosecurity plan to align the implementation of the SIMSP NNS policy and the NNS monitoring work streams. The development of the “Biosecurity Plan for the Shetland Islands” (hereafter referred to as the Biosecurity Plan) was led by the Marine Spatial Planning team at the NAFC. It was guided by a sub-set of the SIMSP advisory group, the “Biosecurity Working Group”, which comprised of decision makers, regulators, industry and community representatives, and Non-Government Organisations (NGOs).

Here we propose a holistic approach to biosecurity planning and NNS management by integrating biosecurity risk assessment methodologies into the wider local management processes of marine spatial planning. As the use of marine spatial planning as a management tool expands (UNESCO 2021), consideration of how to integrate these processes becomes of increasing importance. The challenges and opportunities created within a bottom-up approach to management are assessed within the context of global, pan-European, national and local management measures (e.g. regulations, treaties and policies). In addition, we examine the opportunities for local communities and users to reduce the risks of NNS.

Methods and results

Selection and creation of a NNS risk management framework

To identify an appropriate framework design, the Biosecurity Working Group reviewed the existing management framework for marine activities
in Shetland, primarily the Shetland Islands’ Marine Spatial Plan (SIMSP). It was determined that the SIMSP did not adequately provide the risk management required to tackle NNS through creation of new or amended policies as it only applies to activities which require a marine licence (i.e. aquaculture developments, renewable energy sites) but not to activities such as recreation, fisheries or shipping. Therefore, guidance documents were reviewed, including, environmental management frameworks, biosecurity guidance documents and biosecurity plans developed in other regions (Supplementary material Table S1) Search terms “marine biosecurity plan”, “marine biosecurity guidance” were utilised to find relevant resources.

All documents reviewed used risk identification and management mechanisms. In all cases this was done through variations on risk management procedures. Documents developed by SAMS SRSL Ltd. (Cook et al. 2014, 2015) advocate the use of the Hazard Analysis and Critical Control Point (HACCP) process, a modified risk assessment procedure. All biosecurity plans contained timelines for plan implementation, as well as public engagement and awareness raising.

To manage all risks, including those outside the scope of the licensing process, an ecosystem-based management strategy (i.e. Ehler and Douvere 2009) was adapted to more directly reflect a risk management framework (i.e. Cormier et al. 2013). Ecosystem-based management recognises the full array of interactions within an ecosystem, including humans, rather than considering single issues, species, or ecosystem services in isolation (Christensen et al. 1996). The framework comprises five key stages: 1) management context; 2) risk identification; 3) risk analysis; 4) risk evaluation; and 5) risk treatment (Figure 1). This ecosystem-based management process also contains a continuous monitoring and re-evaluation loop for identifying future risks.

The risk of activities acting as pathways or stepping-stones in NNS introduction and establishment were considered on an activity basis over the four key stages of the invasion process: 1) transportation; 2) introduction; 3) local establishment; and 4) widespread establishment. Within each stage an assessment was carried out to identify the person (individual, agency or body) responsible for managing the risk, the roles of managers and marine users, and the relevant legislation. Where possible, existing local industry practice was reviewed to inform these assessments e.g. extent risk or management measures align with published literature.

Biosecurity plan structure and components

To align the Biosecurity Plan and the SIMSP, the Biosecurity Working Group agreed that the management area should align with that of the SIMSP, which includes the territorial waters seaward of the mean high-water spring (MHWS) out to 12 nautical miles from Shetland. For this reason, it was agreed that the Biosecurity Plan should be limited to marine
Developing biosecurity plans in marine dependent areas

Figure 1. Five-stage approach for risk assessment management of NNS in Shetland, adapted from the ecosystem-based risk management framework (Cormier et al. 2013).

species only, and not consider freshwater aquatics or terrestrial species. The Biosecurity Plan scope was proposed to include all commercial marine users required to adhere to the SIMSP, and commercial and non-commercial marine users that fall outside the management remit of the SIMSP but have a key role in NNS management.

The Biosecurity Working Group identified five key management objectives that should be fulfilled by the Biosecurity Plan:

• reduce the potential for NNS introduction and establishment;
• ensure NNS monitoring is cost effective, efficient, and follows national and international guidelines;
• reduce the impacts of NNS on local marine industries, non-commercial use, and biodiversity;
• conserve natural habitats and ecosystems that are of local, national, and international importance; and
• ensure all marine users are aware of codes of best practice for managing NNS.

Following the review, the Biosecurity Plan layout was organised into four key chapter themes:

• An introduction to non-native species and the need for biosecurity (including policy and legislation);
• Biosecurity concerns- current and potential NNS threats;
• Management of NNS;
• Sector specific guidance.

Risk Identification

Pathways and steppingstones

Workshops were held with the Biosecurity Working Group where members were asked to identify potential pathways of introduction of NNS to Shetland and activities they considered could act as stepping-stones and assist in the local introduction and spread of NNS. Stepping-stones for NNS are manmade features which may provide a habitat offering more favourable growth conditions than the surrounding environment, therefore facilitating the spread of the NNS and are therefore considered crucial in long distance dispersal of NNS (Alharbi and Petrovskii 2019). Analysis of Automatic Identification System (AIS) data held by the NAFC was also undertaken to identify shipping types, routes, and ports of origin of vessels travelling to, past and from Shetland (Shelmerdine 2015; Shucksmith and Shelmerdine 2015).

Activities identified by the Biosecurity Working Group considered to potentially pose a risk of NNS introductions were:

- ballast water exchange at the Sullom Voe Oil Terminal – due to the volume of ballast exchange within the harbour when tankers take on oil from the terminal
- commercial boat biofouling and cleaning
- recreational boat biofouling and cleaning
- aquaculture – equipment fouling, boat and stock movement
- fisheries, specifically large pelagic fishing boats – due to their size (all over 40 m), concern over ballast water exchange and vessels landing in Scandinavian ports

The risks identified within the workshop were examined by the NAFC through literature review and communication with sector specialists to determine current practice (e.g. fisheries trade bodies). Reviewed literature sources used within this assessment are summarised (Table 1). Search terms “non-native species introduction”, “marine non-native species introduction”, “hull fouling”, “fouling marine non-native species”, “ballast water exchange non-native species” and “aquaculture non-native species” were used to initially identify literature. Search terms were repeated with non-native species replaced with “NNS”, “INNS”, “invasive species” and “alien species”. Upon further analysis of risk and discussion with fisheries representatives, fishing boats were not considered to pose a significant risk. Most vessels operate within Shetland waters, returning to and from their home ports. Investigations found that fishing boats do not normally or regularly undertake ballast exchange in port. This identified risk was therefore not considered further.
Table 1. Published literature reviewed to determine the risks posed by activities and infrastructure in the introduction and spread of NNS.

<table>
<thead>
<tr>
<th>Risk type</th>
<th>Activity</th>
<th>Literature sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathway</td>
<td>Recreational boating</td>
<td>Floerl et al. 2005; Ashton et al. 2006; Minchin et al. 2006; Pearce et al. 2012</td>
</tr>
<tr>
<td></td>
<td>(biofouling)</td>
<td></td>
</tr>
<tr>
<td>Pathway</td>
<td>Aquaculture species movement</td>
<td>Diederich et al. 2005; Ruiz et al. 2011; Pearce et al. 2012</td>
</tr>
<tr>
<td>Stepping stones</td>
<td>Marina and ports</td>
<td>Bax et al. 2002; Ashton et al. 2006; Pearce et al. 2012</td>
</tr>
<tr>
<td>Stepping stones</td>
<td>Marine renewables</td>
<td>Adams et al. 2014</td>
</tr>
<tr>
<td>Stepping stones</td>
<td>Aquaculture equipment</td>
<td>Weigle et al. 2005; Pearce et al. 2012</td>
</tr>
</tbody>
</table>

Table 2. Identified risks posed by activities and infrastructure in the introduction and spread of NNS.

<table>
<thead>
<tr>
<th>Risk type</th>
<th>Risk</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathway</td>
<td>ballast water exchange</td>
<td>Tanker ballast water exchange at Sullom Voe due to taking on oil</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Commercial vessel ballast water exchange at all port</td>
</tr>
<tr>
<td>Pathway</td>
<td>biofouling</td>
<td>Hull fouling commercial vessels</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hull fouling commercial recreation</td>
</tr>
<tr>
<td>Pathway</td>
<td>Stock movement</td>
<td>Aquaculture</td>
</tr>
<tr>
<td>Stepping stone</td>
<td>biofouling</td>
<td>Aquaculture equipment</td>
</tr>
<tr>
<td>Stepping stone</td>
<td>Biofouling</td>
<td>Marina and port infrastructure</td>
</tr>
<tr>
<td>Stepping stone</td>
<td>Biofouling</td>
<td>Marine renewable infrastructure</td>
</tr>
</tbody>
</table>

Based on literature review and Biosecurity Working Group feedback, four potential pathways of introduction and three potential stepping stones were initially identified as requiring further consideration within the subsequent risk analysis stages (Table 2).

Established NNS

Prior to the development of the Biosecurity Plan, a Shetland-wide assessment of the presence of NNS had been initiated. A series of rapid assessment surveys (PVC settlement panels and visual surveys of pontoons, buoys, and boat hulls) of four harbours/ports and 14 marinas was conducted between May 2012 and October 2014. A literature review was also undertaken to identify NNS species that had historically been detected, and to understand the current geographical spread of NNS in Shetland (Collin et al. 2015). Rapid assessment surveys revealed the presence of eight NNS in Shetland. Additionally, a literature review revealed three more NNS that had previously been detected in Shetland but were not identified in the rapid assessment surveys. All three records were one-off observations from the natural coastline in areas not included in the rapid assessment surveys. Of the eleven NNS species, five were found to have been present for over 10 years. It was noted that no single source of information could be utilised to identify all NNS currently present in Shetland.

In addition to the survey effort, members of the public were encouraged to report NNS sightings, or potential sightings to the NAFC. NNS identification guides developed by the NAFC (NAFC Marine Centre UHI 2014) were made...
available online and hard copies distributed amongst commercial industries, recreational users, public bodies, and NGOs. Observations from the public, from the natural environment (see Collin et al. 2015) and from surveys targeting manmade structures by the NAFC, all resulted in increased knowledge on the geographical spread of several species.

Potential NNS introductions

To identify a target list of potential NNS, an assessment was made of existing NNS, their distribution in the UK, and their potential vector of introduction. This information was used to consider which other NNS could arrive via the same route. All the NNS detected in the rapid assessment surveys in Shetland were present in mainland Britain before Shetland, and so secondary spread was considered the most likely route of introduction. Therefore, it is considered probable that new NNS introductions will also occur primarily from secondary spread rather than primary introduction.

Potential NNS were identified from literature review, including published articles and online sources, and identified species already present elsewhere in the UK or Scandinavia but not present in Shetland (Table 3). Search terms “non-native species, UK, Scotland, Norway” were used, and additionally references used in online resources were also reviewed. These results generated a list of potential NNS that could be introduced to Shetland. It was noted there was no single source of information which contained up-to-date or complete data sets for the UK and Europe.

These species were screened for likelihood of survival and establishment in Shetland which has much colder sea temperatures than much of the UK, varying between 4–13 °C winter to summer, and lacks estuarine environments or extensive river systems. From the list of potential NNS identified, a target list of eight species (based on likelihood of introduction) were considered within the Risk Analysis and Evaluation stages: *Sargassum muticum* (Yendo) Fensholt, 1955, *Watersipora subatra* (Ortmann, 1890), *Didemnum vexillum* Kott, 2002, *Styela calva* Monniot et al., 1976, *Tricellaria inopinata* d’Hondt & Occhipinti Ambrogi, 1985, *Botrylloides violaceus* Oka, 1927 and *Bugula neritina* (Linnaeus, 1758).
Table 4. Legislative and policy measures to reduce risks posed by marine activities.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Key legislation/policy</th>
<th>Biosecurity Plan</th>
<th>Gaps and limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial shipping – Ballast</td>
<td>International Convention on the Control and Management of Ships’ Ballast Water and Sediments</td>
<td>No additional measures</td>
<td>Legislation not yet fully implemented</td>
</tr>
<tr>
<td>Commercial shipping – Biofouling</td>
<td>International Maritime Organization (IMO) Guidance for the control and management of ships’ biofouling to minimize the transfer of invasive aquatic species (Biofouling guidance) Wildlife and Natural Environment (Scotland) Act 2011 (WANE Act).</td>
<td>Limited local capacity. Plan includes details to allow for detection of NNS. Most likely to be effective on locally based commercial vessels.</td>
<td>Capacity and infrastructure to clean boats or refuse entry</td>
</tr>
<tr>
<td>Recreational boating – Biofouling</td>
<td>International Maritime Organization (IMO) Guidance for minimizing the transfer of invasive aquatic species as biofouling (hull fouling) for recreational craft Wildlife and Natural Environment (Scotland) Act 2011 (WANE Act).</td>
<td>Plan includes details to allow for detection of NNS on recreational vessels and details for organisers of events which attract visiting boats.</td>
<td>Capacity and infrastructure to clean boats or refuse entry to Shetland</td>
</tr>
<tr>
<td>Aquatic species movement</td>
<td>COUNCIL REGULATION (EC) No 708/2007 of 11 June 2007 concerning use of alien and locally absent species in aquaculture</td>
<td>No additional measures</td>
<td>None identified</td>
</tr>
<tr>
<td>Marinas and ports – stepping stones</td>
<td>Wildlife and Natural Environment (Scotland) Act 2011 (WANE Act).</td>
<td>Plan includes best practice information to help minimise the level of biofouling at marinas and ports.</td>
<td>Need and cost of retroactive technical measures to reduce fouling potential</td>
</tr>
<tr>
<td>Marine renewables – stepping stones</td>
<td>Wildlife and Natural Environment (Scotland) Act 2011 (WANE Act).</td>
<td>Plan includes best practice information to help minimise the level of biofouling.</td>
<td>Need and cost of technical measures to reduce fouling potential</td>
</tr>
<tr>
<td>Aquaculture equipment – stepping stones</td>
<td>Wildlife and Natural Environment (Scotland) Act 2011 (WANE Act).</td>
<td>Plan includes best practice information to help minimise the level of biofouling.</td>
<td>Need and cost of technical measures to reduce fouling potential</td>
</tr>
</tbody>
</table>

Risk Analysis and Evaluation

Pathways and stepping-stones

The pathways and stepping-stones identified in the “risk identification” stage, were assessed in the context of literature review, including published articles and online sources (Table 1), local practice or management measure and existing legislation, policies, and agreements (Table 4, Table S2).

Of the transportation and introduction risks identified, only marine aquatic species movement is considered to be fully managed by legislation (Table 4). The risks of commercial and recreational boat fouling can be reduced via regularly cleaning and effective antifouling. An assessment of legislation and regulation indicated limited national or international specific requirements tackling hull fouling, particularly of smaller vessels (Table 4). In Shetland, slipways are present at marinas and can be accessed freely by berth holders, allowing boats to be easily removed for onshore cleaning, however there is no requirement for boat owners to do so. For small and medium sized commercial vessels (those under over 360 tonne or 35 m in length) commercial slipways are available at two locations for boat repairs and maintenance. For larger vessels, there are no facilities...
available in Shetland for boat removal, cleaning and re-antifouling. These vessels must access facilities on the Scottish mainland, Norway or Denmark. No in-water cleaning facilities are available in Shetland for any vessel size. Therefore, risks from boat fouling were not considered to be fully managed. AIS data provides a range of data relating to vessel movement, including information on boat type (e.g. fishing, tanker, recreation), last port of call and position. This data allows for an assessment of the relative risk of NNS introduction by boat fouling (see Shucksmith and Shelmerdine 2015).

In consultation with industry users, vessels which undertake ballast exchange were identified and found to be limited to tankers taking on oil at Sullom Voe Oil Terminal. It was noted that some, but not all tankers, undertake ballast water exchange at sea, in some instances primarily due to legislative requirements of other nations (including the USA). At the time of the Biosecurity Plans development, the International Convention on the Control and Management of Ships’ Ballast Water and Sediments (https://www.imo.org/en/MediaCentre/HotTopics/Pages/Implementing-the-BWM-Convention.aspx) was not ratified. Therefore, the risks associated with transportation and introduction by ballast water exchange were not considered to be fully managed.

Consultation with the aquaculture sector revealed that, salmon smolts are grown on Shetland and also imported from the Scottish mainland via wellboats. During wellboat transfer, water is exchanged regularly (for fish welfare), reducing the risk of the transfer of planktonic species. The shellfish industry only grows the native species *Mytilus edulis* Linnaeus, 1758 – blue mussels. Spat is normally collected naturally during seasonal spat settlement. Legislation preventing import of NNS from outside of the UK was considered adequate to prevent future NNS imports, Table 4. Transportation of NNS (other than by hull fouling), was therefore considered to be low risk by the aquaculture industry.

To assess the risk of marina and port infrastructure acting as stepping-stones for the establishment of NNS, cleaning and antifouling operations at ports and marinas were observed. Navigation buoys are regularly removed for cleaning and re-antifouled before significant fouling can occur. Antifoulant appeared to be effective for two years, and its effectiveness is monitored by the harbour authorities. At the end of the summer visiting yacht season, temporary berths in Lerwick harbour are removed, dried and thoroughly cleaned before being stored for the winter. Observations of cleaning practices across Shetland’s permanent marinas, which are operated by community groups, indicated that marinas were cleaned regularly by volunteers, with fenders and buoys removed from the water. However, it was noted that pontoons and floats could not be removed for cleaning and the marinas had not been designed with NNS eradication in mind. At some locations, natural freshwater influx during heavy rainfall caused the death of some fouling species, in particular tunicates. An examination of legislation
Developing biosecurity plans in marine dependent areas

highlighted that, while future marina design may be required to consider NNS more explicitly, there is no requirement on retrospective NNS measures to be applied, nor monitoring for the presence of NNS (Table 4). Therefore, local establishment of NNS at marinas was considered a risk.

Aquaculture sites were found to have existing biosecurity measures in place to tackle disease transfer and some were found to have incidental benefits for NNS species management. This included the separation of the Shetland coast into discreet management units, with stock, boats, and equipment not being moved between these areas, and synchronous fallowing of sites (where fish and nets are removed) taking place biennially. To aid waterflow nets are anti-fouled and regularly cleaned. Boats are cleaned and re-antifouled sporadically, but feed barges (present at each site) are not regularly cleaned. No specific legislation was noted which required equipment to be cleaned, however national legislation requires consideration to equipment movement (Table 4). Aquaculture sites were therefore considered a risk for local establishment of NNS, with the location and number of sites mapped to identify areas of highest intensity and risk (Shucksmith and Shelmerdine 2015).

There is one tidal array site in Shetland, with equipment serviced and cleaned at an adjacent pier. No specific legislation was noted which required equipment to be cleaned, however national legislation requires consideration to equipment movement (Table 4). The tidal array was considered a risk of local establishment.

Risk factors including, vector type (e.g. ballast water exchange), presence of stepping-stones (e.g. artificial structures), introduction probability (i.e. the likelihood of NNS being released), and the frequency of possible introduction events (i.e. propagule pressure) were used to score areas around the Shetland coast as low to very high relative risk of NNS introduction. These were presented at a scale of 5 × 5 km grid squares. From the assessment, the three most active harbours were identified as the highest risk areas ranging from “very high-risk” (Lerwick and Scalloway) to “high-risk” (Sullom Voe) (see Shucksmith and Shelmerdine 2015), (Figure S1).

Current and potential NNS introductions

An assessment of the risk posed by NNS to economic activity and the marine environment in Shetland was undertaken based upon the GB NNS secretariat risk analysis template (http://www.nonnativespecies.org/index.cfm?pag eid=143) and GB NNS secretariat species assessments http://www.nonnativespecies.org/home/index.cfm). Literature review of activities and species, (Tables 2, 3), in the context of local conditions (environmental and industry practice) were used to review the assessment in the GB NNS secretariat process, and assess whether any local differences would alter the risk assessment outcomes.
Table 5. Scoring criteria for environmental and economic impacts of NNS in Shetland.

<table>
<thead>
<tr>
<th>Score</th>
<th>Introduction</th>
<th>Environmental</th>
<th>Economic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>Pathway to introduction absent or receiving environment unsuitable (absence of habitat, temperature prevent survival)</td>
<td>No or limited evidence that the species could establish in Shetland and/or cause wide scale impact on habitats or environments found in Shetland e.g. smothering, displacement, competition.</td>
<td>No or limited evidence that species could establish in Shetland and cause wide scale impact on habitats or environments which support economic activity e.g. via smothering, competition or displacement.</td>
</tr>
<tr>
<td>Medium</td>
<td>Pathways for introduction present but limited (e.g. occasional or mitigation in place), receiving environment sub-optimal for survival</td>
<td>Some evidence that species will cause impacts impact on habitats or environments found in Shetland e.g. smothering, displacement, competition but impacts are confined to localized areas and not fully displace native flora or fauna.</td>
<td>Likely to occur on habitats or environments which support economic activity and may cause some economic harm but impacts are likely to be localized or overcome at moderate cost.</td>
</tr>
<tr>
<td>High</td>
<td>Pathways for introduction present, receiving environment suitable for species survival</td>
<td>Evidence to suggest that species will cause large scale impacts on habitats or environments found in Shetland or localized impacts on protected habitats e.g. smothering, displacement, competition.</td>
<td>Likely to occur on habitats or environments which support economic activity and impacts may reduce economic viability of the activity or create significant cost e.g. high levels of smothering of aquaculture equipment resulting in significantly higher cleaning costs.</td>
</tr>
</tbody>
</table>

Environmental harm was considered in the context of the prevalence of suitable habitat for establishment and perceived importance of the habitat (e.g. protected status). For instance, species which require low salinity were considered to be of low environmental risk to Shetland where brackish water and estuaries are of very limited extent. Economic impact was considered in the context of the presence and value of marine industries in Shetland e.g. aquaculture, fisheries. Scorings were presented on a three-point scale (low, medium, high) to assist communication, scoring criteria (Table 5).

The risk assessment was used to determine whether known NNS would require specific control or eradication measures. Those with either a medium risk of spread to Shetland or a medium risk to the marine environment or local industry were considered in the Biosecurity Plan. The Plan details potential economic and environmental risks associated with the species, management measures and risks for these species. Species considered low risk were excluded in order that the Biosecurity Plan focused on management measures on species which were considered potential threats. For NNS identified as potential future threats, consideration was given to whether the species could spread to Shetland through natural dispersal or whether transportation via marine activity was necessary.

The detection of a species previously unknown to the UK would require immediate contact with Marine Scotland to determine the risk posed, and would include an assessment of the species reproductive requirements and invasion history elsewhere.

All the 11 NNS species detected in Shetland were rated as low-medium threats to the environment and to the economy (Table 6). Of the NNS species identified as present in Scotland but not in Shetland, six were of medium to high risk of introduction to Shetland (Table 7). Of those found
Table 6. Risk assessment scores for NNS detected in Shetland.

<table>
<thead>
<tr>
<th>Species</th>
<th>Status</th>
<th>Environmental threat</th>
<th>Economic threat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corella eumyota</td>
<td>Widespread in harbours and marinas</td>
<td>Medium</td>
<td>Low</td>
</tr>
<tr>
<td>Schizoporella japonica</td>
<td>Widespread in harbours and marinas</td>
<td>Medium</td>
<td>Medium</td>
</tr>
<tr>
<td>Caprella mutica</td>
<td>Widespread on manmade structures</td>
<td>Low</td>
<td>Medium</td>
</tr>
<tr>
<td>Bugula simplex</td>
<td>Lerwick harbour</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Codium fragile ssp. fragile</td>
<td>Widespread along natural coastline</td>
<td>Medium</td>
<td>Low</td>
</tr>
<tr>
<td>Dasysiphonia japonica</td>
<td>Widespread along the natural coastline and manmade structures</td>
<td>Medium</td>
<td>Low</td>
</tr>
<tr>
<td>Diadumene lineata</td>
<td>Vadills lagoon</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Austrominius modestus</td>
<td>Widespread in harbours and marinas</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Bonnemaisonia hamifera</td>
<td>Widespread in Shetland</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Asparagopsis armata</td>
<td>Widespread in Shetland</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Fenestrulina delicia</td>
<td>Single observation in Sullom Voe</td>
<td>Low</td>
<td>Low</td>
</tr>
</tbody>
</table>

Table 7. Risk assessment scores for NNS not present in Shetland but present elsewhere in Scotland.

<table>
<thead>
<tr>
<th>Species</th>
<th>Risk of introduction</th>
<th>Environmental threat</th>
<th>Economic threat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sargassum muticum</td>
<td>High</td>
<td>Medium</td>
<td>Medium</td>
</tr>
<tr>
<td>Watersipora subatra</td>
<td>Medium</td>
<td>Medium</td>
<td>Medium</td>
</tr>
<tr>
<td>Didemnum vexillum</td>
<td>High</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Styela clava</td>
<td>Medium</td>
<td>Medium</td>
<td>Medium</td>
</tr>
<tr>
<td>Tricellaria inopinata</td>
<td>Medium</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Botrylloides violaceus</td>
<td>Medium</td>
<td>Medium</td>
<td>Medium</td>
</tr>
<tr>
<td>Bugula neritina</td>
<td>Low-medium</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Magallana gigas</td>
<td>Low</td>
<td>Medium</td>
<td>Medium</td>
</tr>
</tbody>
</table>

in Scotland, but not in Shetland, only Didemnum vexillum was considered potentially high risk to both the environment and the economy. From these species, those with the potential to have a medium or high impact on local industries and/or the environment were categorised as “priority” species for inclusion in the Biosecurity Plan. These priority species were considered further in the risk assessment process and included in identification guides to encourage public reporting.

Risk treatment

Risk reduction within introduction pathways and stepping-stones

Risks and potential management measures were detailed in the Biosecurity Plan on a sector-by-sector basis. This assisted in identifying and raising NNS awareness amongst users of potential measures which can be implemented to reduce the risks of spreading NNS, including legal responsibilities (Table 4). For marine activities which require a marine licence, adherence to the Plan, whilst not compulsory, assists with adherence to the policies within the SIRMP.

Non-native species control and eradication

Early detection through increased user awareness and a regular targeted monitoring programme co-ordinated by the NAFC Marine Centre, has been implemented to ensure a rapid response to new threats can be initiated. Monitoring sites were selected through a risk assessment of Shetland's coastal area (Shucksmith and Shelmerdine 2015).
A target list of potential NNS species requiring a rapid response are included within the Biosecurity Plan. A review of control and eradication methodologies was undertaken and considered in the context of these species. Methods of identification of NNS were also considered, including whether expert identification or DNA analysis (in the case of cryptic or polymorphic species) may be required.

For existing and future species, detailed information on species identification, likely pathway(s) of introduction, and potential impacts were included in the Biosecurity Plan. Clear protocols were also included along with NNS identification guides and information leaflets produced by the NAFC, to ensure members of the public and industry know who to contact in the event of a potential NNS detection, including “unknown” species.

From the rapid survey assessments and literature review performed between 2012 and 2014, none of the species currently found in Shetland were categorised high risk. Therefore, no additional action was considered necessary to remove or control the NNS.

Monitoring, implementation and evaluation

The Monitoring and Implementation phase was initiated once the Biosecurity Plan was launched in February 2015. The Biosecurity Plan was made available online at the NAFC website (https://www.nafc.uhi.ac.uk/research/marine-spatial-planning/non-native-species-and-biosecurity-planning/) and hard copies of the Plan were sent to local stakeholders. On publication of the Biosecurity Plan, it became a requirement for all new marine applications to the Shetland Islands Council to consider biosecurity as part of the application process, and use of the Biosecurity Plan guidance began to be monitored.

The NAFC are responsible for the ongoing monitoring, implementation and evaluation of the Biosecurity Plan, the scope of which includes:

- monitoring the use of the Biosecurity Plan in marine licence applications
- responding to applications (as a consultee) for marine licenced activities (from Marine Scotland) that have the potential to spread NNS
- continued collection of field data to assess the spread of existing NNS and detect the introduction of new species
- monitoring of existing activities and industry practice in relation to NNS
- horizon scanning through continued literature review to identify new NNS threats in the UK and their potential for spreading to Shetland
- monitoring of new legislative requirements and implications for management and risk

Current and potential NNS threats

Continued monitoring effort by the NAFC has detected the spread of NNS between marina locations. Two species were observed to have increased...
their distribution around the Shetland coast, Corella eumyota Traustedt, 1882 was detected at Cullivoe marina (Yell) in April 2018, and Schizoporella japonica Ortmann, 1890 was newly detected at East Voe and Port Arthur marinas (both Scalloway) in December 2018. Additionally, Corella eumyota was detected on the shore adjacent to Port Arthur in August 2018 (Shucksmith pers. obs.) and by a member of the public in 2020 on a beach 200 m from the marina (reported by L. Humphrey), however during subsequent surveys it has not been detected, and it is not certain whether it is widely established in the natural environment. Monitoring has not detected any economic or ecological impacts of the NNS at this time.

In 2016, an additional NNS, the Pacific oyster (Magallana gigas (Thunberg, 1793)), was identified after detection of two individuals growing on mussel lines (Shelmerdine et al. 2017). Emerging records from across Scotland suggest this species is now widely established, against previous research suggesting temperatures of 18 °C are required for successful reproduction (Eno 1994).

Outside of Shetland, a number of NNS have been noted to have expanded their range. For example, the non-native sea squirt Asterocarpa humilis (Heller, 1878) has now been detected in Orkney (Kakkonen et al. 2019). At this time there are no reports of significant economic impact or ecological impact. Also in Orkney, the seaweed Sargassum muticum (wireweed) had previously been observed in unattached form, however recent monitoring suggests that it has not become established (Kakkonen et al. 2019).

Monitoring the implementation of the SIMSP NNS policy and the Biosecurity Plan

During the marine licence application process, the SIMSP policy, Biosecurity Plan and guidance documents have been used by consultees, regulators and/or developers. Examples include:

- Advice and conditions have been applied to activities or developments which require a marine licence, including where developers intend to move equipment from an area with known NNS present to an area with no recorded NNS.
- Permission was refused to move equipment known to be fouled with NNS (detected by NAFC monitoring programme) without prior cleaning/decontamination. In this instance, the legislative requirements of Wildlife and Natural Environment (Scotland) Act 2011 (also known as the WANE Act) which prohibits the movement of NNS from one area to another, provided a strong legal underpinning to the decision.

Additionally, the Biosecurity Plan and supporting baseline data have been used by developers when creating site-specific biosecurity plans (three occasions), including marine renewables and the movement of equipment.
Monitoring legislation changes

Since the implementation of the Biosecurity Plan, the International Convention for the Control and Management of Ships’ Ballast Water and Sediments came into force on 8th September 2017, with standards for new ships and existing vessels which seeks to reduce the risk of NNS transportation and introduction via ballast water.

Discussion

The Biosecurity Plan represents the culmination of marine spatial planning, stakeholder interests, and environmental management working towards safeguarding marine industries and environments from NNS introductions. Integrating biosecurity management into marine planning has utilised an existing stakeholder forum and management framework. Although the Biosecurity Plan supports the SIMSP, it is not itself a policy document and, therefore, it is not mandatory for all marine users to adhere to the suggested practices. It does, however, support marine users by providing advice on how to meet the policy requirements found within the SIMSP and wider legislation. Subsequently, it brings together licenced and non-licenced activities in the same framework for the first time.

The ecosystem-based management approach that forms the basis of the Biosecurity Plan provides not only a transparent process for the identification and assessment of risks, but also provides a framework for the creation of practical guidance on how all marine users can contribute to mitigating these risks. Our ability to detect and manage newly introduced NNS improves vastly when marine users from all sectors and industries are involved in decision making. This includes measures which can support risk prevention, mitigation and recovery.

Effectively identifying, analysing and systematically representing stakeholders is crucial to the design of participation and communication strategies to improve biosecurity (Reed and Curzon 2015). To ensure all management measures suggested in the Biosecurity Plan were realistic, practical, and cost-effective, stakeholders were regularly involved and consulted throughout its development and implementation. Stakeholder participation was essential for gaining marine-user cooperation and support for the Biosecurity Plan.

Throughout the development of this Biosecurity Plan, the incorporation of a diverse range of sources of knowledge, from scientific resources to locally specific information on environmental factors that might promote NNS, has improved its implementation and adoption. Additionally, the involvement and support of local and national stakeholders, including decision-makers, regulators, NGOs, local industry, and community representatives has encouraged compliance by both commercial and non-commercial marine users. Ultimately, the implementation of the
Biosecurity Plan should benefit all parties involved and assist marine users and regulatory bodies meet their legal obligations for NNS management.

There is growing evidence in Shetland that biosecurity is receiving greater consideration by developers and decision makers in the licensing process and analysis of specific licensing decisions highlights the importance of a legislative basis for decisions (primarily through the WANE Act in Scotland). Reports of NNS sightings to the NAFC by industry and the public, indicate there is a growing awareness of the problems associated with NNS and a willingness to report them. This increased reporting raises the likelihood of detecting a potentially high-risk NNS early and commencing actions to manage it. Early detection and action to address NNS is considered critically important to management success (Piola and McDonald 2012; Sambrook et al. 2014). Protocols within the Biosecurity Plan help to ensure that marine users are aware of the need to report potential sightings rapidly and ensure that protocols can be implemented rapidly.

In Scotland biosecurity plans are voluntary, produced both for specific areas and for specific events. As most of these plans contain high level objectives, compliance can be difficult to assess. However, there are examples of effective use of voluntary measures. As part of the Commonwealth games celebrations, held in Glasgow in 2014, visiting vessels wishing to take part in a flotilla were asked to arrive clean, or face mandatory cleaning (at owners costs) (Stuart 2014). This request was complied with by participating vessels, which were inspected and found to be clean on arrival. Ensuring continuous compliance over larger scales poses a more substantial challenge, particularly where management measures are voluntary, and where costs and belief in effectiveness of these measures can be barriers (Vye et al. 2020). Within the fisheries sector the creation of voluntary management measures developed by stakeholders has been found to be key to their successful development and design, but a statutory underpinning was found to be necessary to ensure universal compliance (Shelmerdine et al. 2017).

Identifying which NNS are the most likely candidates for introduction forms a key part of the risk management process as this refined list can assist with monitoring design and effort, and early eradication action if detected within the plan’s region. The Shetland Biosecurity Plan assists in reducing the establishment of all NNS by providing sector specific guidance. However, detailed species-specific information is only given for NNS which have been introduced elsewhere, rather than identifying species which may be introduced in the future. For effective horizon scanning of potential NNS, records of NNS and their potential to spread, either naturally or via human activity, needs to be readily and publicly available. The absence of these data, both within the UK and Europe, has been a continuous problem in the development of the Biosecurity Plan,
and increases the challenges associated of planning for the “unknown”. The NAFC addressed this problem through regular contact with researchers and practitioners in adjacent regions and taking responsibility for species monitoring in Shetland. Concerns over data availability have been highlighted elsewhere (Collin et al. 2015; Lehtiniemi et al. 2015; Shelmerdine et al. 2017), with records of new detections often taking years to become publicly available.

Monitoring efforts that operate at an international scale often result in a focused effort in a small number of key locations within a nation (Hellmann et al. 2008; Lehtiniemi et al. 2015; Oswalt et al. 2021). This has meant that smaller, marine dependent areas such as Shetland, are not subject to national monitoring effort, despite their relative economic and environmental fragility to marine NNS. The targeted approach to species surveillance undertaken in Shetland, whilst being cost efficient and assisting in public engagement, means that new NNS (ones previously undetected in the UK) may go undetected. This challenge can often be exacerbated by an incomplete understanding of baseline biodiversity data for the majority of the world’s marine and estuarine areas (Campbell et al. 2018). However, the targeted local monitoring programme using both settlement panels and rapid assessment surveys by marine biologists based at the NAFC increases the likelihood of other NNS being detected, despite not being specifically targeted.

This study highlights the role marine regions can play in tackling the threat of NNS and contributing to the international biosecurity agenda. However, it also highlights the challenges marine regions and countries face in tackling transportation and introduction without widespread collaboration between countries and regions. For all marine regions, a challenge exists in implementing preventative measures which are strict enough to tackle the threat posed by NNS, but not so strict that marine development is displaced to neighbouring competitors (countries or regions) where the burden of biosecurity measures is perceived as less arduous. Displacement of marine activity has the potential to cause economic costs to developers and communities, for instance through lost revenue. For marine dependent regions such as Shetland it poses dichotomous risks, loss of income through stricter measures, or potential loss of income through environmental impacts if a harmful NNS is introduced. This decision challenge is reflected at national and regional scales. In the UK the estimated cost of marine NNS is £39.9 million (Williams et al. 2010).

This study identifies the variety of international agreements and legislation that set commitments to reduce the impacts of NNS (including the Marine Strategy Framework Directive and Convention for Biodiversity), but also the relatively few pieces of legislation aimed at directly tackling specific risks through explicit implementable measures e.g. a requirement to put boat cleaning infrastructure in place in each region, or a requirement
to keep boats clean. Internationally, the significant delay in bringing the Ballast Water Convention into force (13 years after its adoption) demonstrates both this reluctance to introduce costly measures to tackle NNS, and the lack of readily available affordable technological solutions. Monitoring the role-out of the Ballast Water Convention will affect the scoring of the risk areas for introduction, with the potential for Sullom Voe, home to Europe’s largest Oil Terminal and high levels of ballast water exchange, to be reclassified. This may change monitoring prioritisation in Shetland and highlights the importance of reassessing risks once interventions have been put in place. The use of a risk management framework allows for adaptive management to be implemented, reflecting changing international and local practice.

The NAFC Marine Centre UHI has taken on the responsibility of maintaining the biosecurity plan, monitoring for the presence of NNS and responding to licence applications as part of its role within the Shetland Marine Planning Partnership. However, monitoring compliance by ports and harbours and marina users to these voluntary management measures is beyond the resources of the marine planning partnership. Enforcing biosecurity measures relating to vessel movement (e.g. ballast exchange and hull fouling) would be most effectively achieved at an individual marina or port/harbour level. Resourcing and assigning responsibility for this enforcement and monitoring has not been addressed within the UK, undermining biosecurity planning.

Here we highlight the role marine communities play in reducing the risks posed by NNS and biosecurity planning using a framework which can be replicated in other regions. However, without international collaboration and agreed measures, many communities primary defence against the risks posed by NNS are post-border control, which is considered the least effective way to tackle NNS with many control or eradication attempts unsuccessful (Forrest et al. 2009). Legislation and high-level policy (national or international) need to continue to move beyond aspirational goals and expand to specific measures and infrastructure to reduce the risks posed by NNS.

Acknowledgements

We would like to thank all members of the Shetland Marine Planning Advisory Group and the biosecurity planning sub-group for their involvement in developing the Biosecurity Plan for the Shetland Islands. We would also like to thank Shetland businesses and public who have reported the presence of NNS in Shetland. We would like to thank Marine Scotland and the Shetland Islands Council for their continued financial support and also the anonymous reviewers for their comments on the manuscript.

Funding declaration

Funding support for the Shetland Marine Planning Partnership is provided by Marine Scotland and Shetland Islands Council. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Authors’ contribution

Rachel Shucksmith was responsible for securing funding for this research, and research conceptualisation. She was responsible for some elements of data analysis and collection, and co-writing the manuscript. Samuel Collin was responsible for the developing the biosecurity plan, investigation and data collection. He was responsible for co-writing the manuscript.

Ethics and permits

All work was undertaken to NAFC Marine Centre UHI ethics standards and protocols.

References

Eno C (1994) Monitoring the Temperature Regimes of Which the Pacific Oyster *Crassostrea gigas* Is Subject to in Coastal Inlets in Britain (The Fleet Lagoon and Teign and Dart Estuaries) in Relation to Their Reproductive Success. Report for the JNCC, 17 pp

NAFC Marine Centre UHI (2014) Shetland Islands’ Marine Spatial Plan. NAFC Marine Centre, UK, 202 pp

Supplementary material

The following supplementary material is available for this article:

Table S1. Environmental management frameworks, biosecurity plans and guidance reviewed to develop biosecurity management framework.

Table S2. International, national and local legislation and policy reviewed to guide biosecurity plan requirements and structure.

Figure S1. Total risk level and sensitivity for the introduction of non-native species.

This material is available as part of online article from: http://www.reabic.net/journals/mbi/2022/Supplements/MBI_2022_Collin_Shucksmith_SupplementaryMaterial.pdf