Research Article

First record of *Xiphopenaeus kroyeri* Heller, 1862 (Decapoda, Penaeidae) in the Southeastern Mediterranean, Egypt

Amal Ragae Khafage* and Somaya Mahfouz Taha
National Institute of Oceanography and Fisheries, 101 Kasr Al-Ainy St., Cairo, Egypt
*Corresponding author
E-mail: amal_khafage@live.com

Abstract

Four hundred and forty seven specimens of a non-indigenous shrimp species were caught by local fishermen between the years 2016–2019, from Ma’deya shores, Abu Qir Bay, Alexandria, Egypt. These specimens were the Western Atlantic *Xiphopenaeus kroyeri* Heller, 1862, making this the first record for the introduction and establishment of a Western Atlantic shrimp species in Egyptian waters. Its route of introduction is hypothesized to be through ballast water from ship tanks. Due to the high population densities it achieves in this non-native location, it is now considered a component of the Egyptian shrimp commercial catch.

Key words: shrimp, seabob, Levantine Basin

Introduction

The commercial catch of shrimps in Alexandria, Southeastern Mediterranean Sea, is composed of several penaeid genera which includes two indigenous species, *Melicertus kerathurus* (Forsskål, 1775) and *Parapenaeus longirostris* (Lucas, 1846), several Lessepsian immigrants, *Penaeus semisulcatus* (De Haan, 1844), *Marsupenaeus japonicus* (Bate, 1888), *Metapenaeus monoceros* (Fabricius, 1798), *Metapenaeus stebbingi* (Nobili, 1904), *Trachysalambaria curvirostris* (Stimpson, 1860) (Holthuis 1980; Fischer et al. 1987; Bariche 2012), and two newly established species (documented in the last three decades), *Metapenaeopsis aegyptia* (Galil and Golani, 1990), *Metapenaeopsis mogiensis consobrina* (Nobili, 1904) (Galil 1997) and *Penaeus hathor* (Burkenroad, 1959) (Galil 1999).

The Mediterranean Sea has been impacted by several human activities including the construction of the Suez Canal (1869) and Aswan High Dam (1964), mariculture, commercial and recreational fishing, pollution, maritime traffic and global warming (Rilov and Galil 2009). These activities, among others, have led to the introduction of over 700 non-indigenous species (NIS) from warm Indo-Pacific waters into the Mediterranean Sea (Mamhoud et al. 2015; Galil et al. 2018), making the
Mediterranean Sea a global hotspot for bioinvasions (Galil et al. 2017). Crustaceans are the second most abundant NIS species group currently in the Mediterranean (159 species); among the crustaceans, decapods are the prevailing taxon (Zenetos et al. 2012).

The present study aims to identify new shrimp species recently observed within the Egyptian commercial shrimp catch off the coast of Alexandria, Egypt.

Materials and methods

Sample Collection

During the monthly routine sampling of shrimp catch by the National Institute of Oceanography and Fisheries (NIOF), Alexandria, Egypt, unfamiliar specimens were clearly observed among the indigenous penaeid species. They were caught from the area of Boughaz El-Ma’deya, Abu Qir Bay (Figure 1) by local fishermen. Data from 101 non-indigenous shrimp specimens were recorded between July and September 2016. Additional samples were collected and analyzed for more confirmation in October 2016 (N = 17), October 2017 (N = 118), and January and February 2019 (N = 238).

Sample Analysis

All non-indigenous specimens underwent visual taxonomic diagnosis based upon keys of Burkenroad (1934), Pérez-Farfante (1988), Pérez-Farfante and Kensley (1997) and Carpenter (2002). The sex was examined macroscopically and sexually differentiated with the naked eye. Then morphometric study was done by measuring the total length TL and carapace length CL (to 0.1 mm accuracy) using digital Vernier caliper. The total weight TWt was recorded using digital balance (to 0.1 g accuracy). Specimens were preserved in 80% ethyl alcohol and 3% formalin. They were kept in the Collection of the Zoology Department, Faculty of Science, Alexandria University, and also in the Museum of the NIOF in Alexandria, Egypt.

Results

Description of specimens

In the present study, careful and accurate macroscopic examination showed that the observed species was *Xiphopenaeus kroyeri*, the Atlantic seabob shrimp (Figure 2). *Xiphopenaeus kroyeri* (Heller, 1862) has a closed thelycum with a single smooth broad plate of sternite XIV, and its anterolateral hood is extremely reduced. The proximal anterior sternal invagination is as broad as a sternite, forming a spacious pocket extending to the posterior thoracic ridge. The median protuberance of sternite XIII is also broad but considerably shorter (Pérez-Farfante and Kensley 1997). The seminal receptacle is a bilobed pair of invaginated sac-like sperm receptacles, whose apertures are hidden by the thelycum, and the main lobes may extend back into the first pleonid somite (Burkenroad 1934).
First record of *Xiphopenaeus kroyeri* in the Southeastern Mediterranean

Figure 1. Sampling site, noted with a star, of *Xiphopenaeus kroyeri* collected between the years (2016–2019) in Boughaz El-Ma’deya, Abu Qir Bay, Mediterranean Sea, Egypt.

Xiphopenaeus kroyeri (Figure 2) possesses the generic characteristic of an oblique longitudinal suture of the genus *Xiphopenaeus*. It appears very faint, extending from just beside the antennal spine to the mid-length of the carapace, parallel to the longitudinal body axis. The thelycum (Figure 2E) is a good representation of the genus. The petasma is symmetrical, semi-closed and produced distolaterally in a pair of broad horns, which are characterized by wide terminal expansions (Pérez-Farfante and Kensley 1997) (Figure 2F).

Table 1 shows the TL, CL and TWt of the specimens collected between the years 2016–2019. The table also shows the number of male and female in the different collected samples during the study period. The sex ratio was found to be 2.2:1 and is female biased. Moreover, the results show that the females of *X. kroyeri* are larger than the males.

Color of *X. kroyeri* in life

Dense dark chromatophores are scattered on the external surface of the carapace, giving the body a grayish color. The tips of the rostrum and flagella are reddish-orange, while the pereiopods, pleopods, last abdominal segment, telson and uropods are pink to orange.

Discussion

Seabob shrimp of the genus *Xiphopenaeus* constitutes an important fishery resource along the Atlantic and Pacific coasts of Central and South America.
First record of *Xiphopenaeus kroyeri* in the Southeastern Mediterranean

Gusmão et al. (2006). *Xiphopenaeus kroyeri* (Figure 2) is one of the larger species in this genus, reaching total lengths of > 10 cm (Holthuis 1980), with females significantly larger than males (Branco et al. 1994; Grabowski et al. 2014; Grabowski et al. 2016). This large size contributes to its status as one of the top 10 commerical penaeoid shrimp species caught worldwide (D‘Incao et al. 2002; Silva et al. 2013) and this is with accordance with the present study results.

It has a wide native geographical range throughout the Central Western Atlantic Ocean from Cape Hatteras, NC, USA to Southern Brazil (State of Rio Grande do Sul) (Costa et al. 2007), and it inhabits shallow coastal waters (0–30 m) with muddy and sandy soft bottoms (D‘Incao 1999). Its life cycle does not demand an estuarine grow out phase, as it spends all its
Table 1. Morphometrics of the collected samples of *Xiphopenaeus kroyeri* Heller 1862, collected from Abu Qir Bay during the years 2016–2019: Carapace length CL ± SE (mm), Total Length TL ± SE (mm), Total weight TWt ± SE (g), sex differentiation and the number (N) of both sexes.

<table>
<thead>
<tr>
<th>Sampling Date</th>
<th>Carapace length CL(mm)</th>
<th>Total length TL (mm)</th>
<th>Total weight TWt (g)</th>
<th>sex</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jul – 2016</td>
<td>33.2 ± 0.86</td>
<td>80.04 ± 1.91</td>
<td>3.39 ± 0.29</td>
<td>Male</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>40 ± 0.52</td>
<td>89.53 ± 0.9</td>
<td>4.59 ± 1.38</td>
<td>Female</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>37 ± 1.21</td>
<td>87.16 ± 1.66</td>
<td>3.49 ± 0.34</td>
<td>Male</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>44.8 ± 1.2</td>
<td>100.66 ± 1.99</td>
<td>6.03 ± 0.52</td>
<td>Female</td>
<td>15</td>
</tr>
<tr>
<td>Aug – 16</td>
<td>34 ± 4</td>
<td>86 ± 3</td>
<td>3.41 ± 0.48</td>
<td>Male</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>43.2 ± 1.37</td>
<td>98.9 ± 2.79</td>
<td>5.86 ± 0.50</td>
<td>Female</td>
<td>10</td>
</tr>
<tr>
<td>Sep – 16</td>
<td>24.3 ± 0.47</td>
<td>59.42 ± 1.58</td>
<td>1.07 ± 0.13</td>
<td>Male</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>28.4 ± 1.32</td>
<td>65.4 ± 2.80</td>
<td>1.69 ± 0.19</td>
<td>Female</td>
<td>10</td>
</tr>
<tr>
<td>Oct – 16</td>
<td>32.32 ± 0.88</td>
<td>77.92 ± 1.88</td>
<td>2.97 ± 0.23</td>
<td>Male</td>
<td>38</td>
</tr>
<tr>
<td>Oct – 2017</td>
<td>39.86 ± 0.68</td>
<td>89.77 ± 1.4</td>
<td>4.66 ± 0.19</td>
<td>Female</td>
<td>80</td>
</tr>
<tr>
<td>Jan – 2019</td>
<td>35 ± 0.05</td>
<td>84.6 ± 0.11</td>
<td>3.39 ± 0.1</td>
<td>Male</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>40.9 ± 0.06</td>
<td>92 ± 0.13</td>
<td>4.54 ± 0.21</td>
<td>Female</td>
<td>64</td>
</tr>
<tr>
<td>Feb – 19</td>
<td>37.7 ± 0.03</td>
<td>90.6 ± 0.12</td>
<td>3.88 ± 0.1</td>
<td>Male</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>44.2 ± 0.05</td>
<td>100 ± 0.13</td>
<td>6.35 ± 0.19</td>
<td>Female</td>
<td>101</td>
</tr>
</tbody>
</table>

Life in marine waters (Iwai 1973a, b). Like most penaeid shrimps, *X. kroyeri* is a fast growing species (Gulland and Rotschild 1984) that exhibits sexual dimorphism with females reaching maximum size after ~ 21 months versus ~ 16 months for males (Heckler et al. 2013a). In the present study, the described characters of the adult male petasma of genus *Xiphopenaeus* were in accordance with the description following Burkenroad (1934); Pérez-Farfante (1989); Pérez-Farfante and Kensley (1997) and Carpenter (2002). Moreover, it was observed that the sex ratio is female-biased. This is in accordance with Grabowski et al. (2014), Castro et al. (2005), De Campos et al. (2011) and Heckler et al. (2013b). On the contrary, Lopes et al. (2010) found a male-biased sex ratio which according to the authors is less common for *X. kroyeri*.

Routes of Invasion

The marine biodiversity in the Mediterranean Sea has been changing for the past two centuries, and the rate of recorded marine invasive species has increased in recent years (Galil 2000; Zenetos et al. 2005; Streftaris et al. 2005; Rilov and Galil 2009). The tropicalization (Bianchi 2007), or spread of thermophilic species, in the Mediterranean has been ascribed to the interaction of the following four main factors: the Atlantic flux, lessepsian migration, human-mediated activity (i.e., maritime traffic, ballast water and aquaculture) and climate change (Otero et al. 2013; Bianchi and Morri 2003; Pancucci-Papadopoulou et al. 2005).

In the present study, the unexpected arrival of *Xiphopenaeus kroyeri* to Egyptian waters has led to several hypotheses concerning possible entry ways of the species into the Mediterranean Sea and its establishment in the Southern Levant Sea. It is most likely that the development of the shipping industry, with faster ships and larger quantities of ballast water traveling between geographically separate areas, has an increasing potential to...
transport NIS to new areas. As stated by Leppäkoski et al. (2002), 3,000–4,000 species may be transported in ships’ ballast water on average each day. Furthermore, Orlova (2002) mentioned that the presence of free-living stages promoted both remote dispersal by ballast water communities between regions as well as rapid colonisation of accessible habitats within and between novel localities. Recently, 14 European ballast studies recorded ~990 species from ballast tanks (sampled from both water and sediment), ranging from bacteria to 15 cm long fishes (Minchin and Gollasch 2002). Hence, it is likely that the main route of invasion of *Xiphopenaeus kroyeri* as larvae is through the ballast water tanks.

It is worth mentioning that recent phylogenetic research has revealed the presence of three separate species of genus *Xiphopenaeus*, two Atlantic and one Pacific. In Brazil, Gusmão et al. (2006) mentioned in their study that the collected specimens from different Atlantic and Pacific populations showed the presence of two cryptic *Xiphopenaeus* species in the Atlantic that they named *Xiphopenaeus* sp. 1 and sp. 2. Moreover, they confirmed the occurrence of a third species from the Pacific and they considered it to be *X. riveti*. Furthermore, in their most recent study, Gusmão et al. (2013) confirmed the published results in Gusmão et al. (2006) with great similarity by using an advanced methodology called geometric morphometrics. Additionally, they suggested that it is likely that *Xiphopenaeus* sp. 1 is in fact *X. kroyeri*. On the other hand, *Xiphopenaeus* sp. 2 remains to be an unidentified species.

The results of the present study show the first record of the seabob shrimp *Xiphopenaeus kroyeri* in the Mediterranean Sea and its successful establishment on the coasts of the Southern Levantine Basin for the past 3 years. It is now a part of the Egyptian commercial shrimp fishery. The mode of its introduction is likely to have been through the release of ballast waters from ship tanks. It is important to encourage further studies to assess the population size and impact on indigenous shrimp populations as well as its ecological impact on habitats and associated fauna (especially as possible novel prey items). Finally, a genetic analysis is also recommended to clear any conflict in the identification of *Xiphopenaeus kroyeri*.

Acknowledgements

The authors are grateful to all of our professors in the Faculty of Science, Alexandria University, who encouraged us to continue on the path of research. In addition, we would like to thank all of our supervisors and colleagues in the National Institute of Oceanography and Fisheries. Special thanks are due to Elzahrae M. Elmasry, Mahmoud A. Attallah, and Dr. Tarek El-Geziry (for providing the map of the sampling locations). Finally, we thank the anonymous reviewers of this manuscript for constructive comments.

References

First record of Xiphopenaeus kroyeri in the Southeastern Mediterranean

398

