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Editor’s note: 

This study was first presented at the 9th International Conference on Marine Bioinvasions held in Sydney, Australia, 
January 19–21, 2016 (http://www.marinebioinvasions.info/previous-conferences). Since their inception in 1999, ICMB 
series have provided a venue for the exchange of information on various aspects of biological invasions in marine 
ecosystems, including ecological research, education, management and policies tackling marine bioinvasions. 

Abstract 

While screening-level risk assessment (SLRA) tools for non-indigenous species generally provide managers with reliable 
information for decision making (e.g., a proposed species introduction should be allowed or rejected), the results are affected 
by several sources of uncertainty. In particular, model uncertainty, related to the influence of factors/questions included in 
SLRA tools has rarely been addressed. Here we undertook an investigation of model uncertainty using a detailed evaluation 
of the contribution of questions included in the Canadian Marine Invasive Screening Tool (CMIST) and determined if the 
tool can be made more accurate through a series of optimization procedures. Accuracy was defined as the fit between 
assessment scores and the results of an expert opinion survey of risk posed by 48 marine invertebrate species known to have 
been introduced into Canadian coastal waters. We first measured the contribution of each question to accuracy and removed 
the ones that did not improve the fit. We then derived optimal weights that adjust the contribution of each question to 
maximize accuracy. Eight of 17 questions were found not to improve accuracy, or even decreased it; removing these 
questions, followed by addition of weights made the tool gradually more accurate when all species were included. However, 
an independent cross-validation test showed these weights to be too variable to consistently improve fit; this was probably 
related to the relatively small number of species included in the tests. Tools that have previously been tested using a large 
number of species should be used to determine if addition of optimal weights can improve independent predictions. The 
evidence that risk assessment tools are over-parameterized is building and we suggest that currently used tools would benefit 
from a detailed evaluation of the value of questions they include. Careful selection of questions and weights, based on 
accuracy improvement and other elements (e.g., organizational mandate) could greatly benefit SLRA tools, by providing 
more accurate estimations of risk and accelerating assessments. 

Key words: risk assessment, invasions, marine invertebrates, Canadian Marine Invasive Screening Tool, 
Weed Risk Assessment tool 

 

Introduction 

Effective management of non-indigenous species 
requires an evaluation of the risk posed by a species 

to the ecological integrity of a target area. The most 
commonly used tools are semi-quantitative scoring 
systems that operate at the screening-level (reviewed 
in Kumschick and Richardson 2013) and generally 
provide reliable risk assessments with minimal data 
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and time investment (e.g., Gordon et al. 2008). Most 
of these tools have been adapted from the Australian 
Weed Risk Assessment tool (WRA; Pheloung et al. 
1999) and ask several questions about factors or 
traits thought to be related to the invasive potential 
of a species. Answers to questions are typically 
converted to an ordinal scale and combined mathe-
matically to provide a final risk score. Many such 
tools have been developed and tested for different 
taxa and geographical areas (e.g., Daehler et al. 2004; 
Copp et al. 2009; Tricarico et al. 2010; Gordon and 
Gantz 2011). While they provide good first-pass 
evaluations for many species, tools could be 
improved as some species are invariably classified 
incorrectly and others require further evaluation 
before a recommendation can be made (Kumschick 
and Richardson 2013). 

The results returned by a risk assessment tool are 
influenced by several sources of uncertainty. The 
quality of information used to answer each question 
will vary among species. This information, and the 
wording of questions, can be interpreted differently 
by different assessors (judgment subjectivity and 
linguistic uncertainty, sensu Regan et al. [2002]). 
The same sources of uncertainty apply to the data 
used to calibrate and test tools (typically expert 
opinion about the realized impact or risk of species 
already present in an area). These processes lead to 
scores of varying levels of uncertainty among species, 
areas, assessors, and experts. While progress is being 
made in addressing these sources of uncertainty 
(judgment subjectivity and linguistic uncertainty, see 
Copp et al. 2009; Holt et al. 2012; Drolet et al. 
2015), model uncertainty (sensu Regan et al. [2002]), 
related to which variables are needed to best represent 
a biological phenomenon, has rarely been addressed. 
For example, the WRA and its derivatives ask 49 
questions, most of which deal with biological 
attributes/characteristics thought to influence invasi-
veness. However, empirical evidence linking many 
of these factors to invasiveness is weak (e.g., Bomford 
and Glover 2004). This has led many to suggest that 
risk assessment tools for invasive species are over-
parameterized; tools may be equally or even more 
accurate if they are made more parsimonious through 
a careful selection of questions (Caley and Kuhnert 
2006; Gordon et al. 2008; Koop et al. 2012; Bradie 
et al. 2015). In addition, if questions have variable 
discriminatory power, one would expect scores to be 
more accurate if their contribution to the final risk 
score was weighted according their discriminatory 
power. However, in most current tools, questions are 
either weighted equally or based on their perceived 
importance rather than on empirically-derived 
influence (but see Koop et al. 2012). 

Recently, Drolet et al. (2015) developed and 
tested the Canadian Marine Invasive Screening Tool 
(CMIST), a tool designed to evaluate risk of accidental 
introductions of non-indigenous marine invertebrate 
species. The CMIST scores provided good approxi-
mation of expert opinion on biological risk associated 
with species known to have been introduced to 
Canadian coastal waters. Here we attempt to optimize 
CMIST by undertaking a detailed evaluation of the 
relative importance of each assessment question and 
adjusting their contribution to the final risk score. 
We first evaluate the influence of each question on 
the fit between expert opinion and CMIST scores, 
and the consequences of removing the questions that 
do not contribute to the fit. We then derive optimal 
weights for each question, based on their empirical 
relationship to expert opinion scores, and evaluate how 
this weighting influences score accuracy and precision. 

Methods 

Data acquisition 

The CMIST was developed with potential over-
parameterization in mind (i.e., keeping it as parsimo-
nious as possible), and thus includes only 17 questions 
directly related to the invasion process: eight pertaining 
to likelihood of invasion and nine to potential 
impacts (Table 1; see Supplementary material Table S1 
for full question formulation). A semi-quantitative 
score is assigned to each question based on assessors’ 
answers (Low = 1, Moderate = 2, or High = 3) and 
level of uncertainty (see Drolet et al. 2015). Scores 
are averaged for the “likelihood” and “impact” 
questions and these two scores are multiplied to obtain 
a final score, potentially ranging from 1 to 9. The 
CMIST was tested by comparing the average score 
returned by two assessors and expert opinion scores 
on risk posed by species known to have been 
introduced to three Canadian marine ecoregions 
(DFO 2009; one on the west coast and two on the 
east coast). The expert opinion scores were based on 
level of risk and uncertainty (both being scored as 
Low, Moderate, or High; see Drolet et al. 2015) and 
potentially ranged from one to three. The assessment 
scores were well correlated to expert opinion for the 
two east coast ecoregions (R2 = 0.48 and 0.74), but 
the fit was poorer on the west coast (R2 = 0.23), 
probably due to lower information availability (to 
assessors and experts) resulting in wider confidence 
limits in this ecoregion (Drolet et al. 2015). 

In this study, we analyzed species from all ecore-
gions together. Initially, we planned to use species-
ecoregion combinations as independent data, but 
many of the species included  were introduced to 
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Table 1. Contribution of CMIST questions to the fit between assessment scores and expert opinion for all species and geographical and 
taxonomic subsets. Values are differences in percentage of variation explained when a question is included and when it is not. Positive values 
(shaded) represent questions that contributed positively to accuracy; negative values represent questions that decreased accuracy. Full 
question formulation can be found in Supplementary material Table S1. 

Question Both coasts East coast West coast Mollusca Crustacea Tunicata 
Likelihood of invasion 
1) Established 2.54 -2.28 4.37 4.05 1.92 -0.01 
2) Arrival -1.81 0.61 -0.86 -2.80 -0.16 -2.39 
3) Habitat -1.57 -2.07 -1.03 2.33 -2.62 -0.59 
4) Climate -0.91 0.91 -2.06 -3.33 -1.09 0.36 
5) Reproduction 2.82 1.20 2.37 1.86 2.14 0.14 
6) Control agents 0.56 4.46 1.41 3.47 -0.61 -0.40 
7) Natural dispersal -0.80 0.51 -4.63 -5.05 -0.92 0.39 
8) Anthropogenic dispersal 0.81 -0.76 2.05 2.20 0.23 0.26 
Impact of invasion 
9) Impact on populations 0.52 -0.69 0.41 0.51 0.50 -0.06 
10) Impact on communities 1.22 0.43 1.00 3.26 0.39 -0.15 
11) Impact on habitat 1.45 -0.94 0.60 0.56 -0.31 0.39 
12) Impact on ecosystems 1.93 -2.22 1.87 0.84 1.80 0.00 
13) Diseases and parasites -0.57 2.24 -1.06 -2.04 0.95 -0.63 
14) Genetic effects -4.00 -0.74 -3.06 -4.85 -2.34 -0.37 
15) Impact on at-risk species -0.30 1.94 -0.03 -0.33 0.03 0.16 
16) Impact on aquaculture -0.26 2.20 -0.19 -0.51 -2.60 0.19 
17) Invasive elsewhere 2.48 1.59 2.84 6.79 0.67 -0.41 

 

more than one ecoregion. The scores for species 
from the 2 coasts were different enough to be 
considered as unique replicates; however, they 
were very similar between the two east coast 
ecoregions and were therefore pooled. 

Evaluation of question importance 

To determine how each question contributed to the 
accuracy of CMIST (i.e., the ability of the tool to 
correctly estimate the expert evaluation of risk for a 
given species-coast combination), we first calculated 
the proportion of variation in expert opinion scores 
explained by CMIST scores (R2 of a linear regression) 
when all questions were included. We then removed 
one question at a time in score calculation and again 
calculated the R2. The contribution of a question was 
defined as the difference in percentage of variation 
explained by the regression when it is included and 
when it is not. Therefore, if a question contributes 
positively to the match between CMIST and expert 
opinion scores, the value is positive, i.e., the R2 is 
larger (greater accuracy) when the question is inclu-
ded than when it is not. Conversely, a negative value 
means that the match between CMIST and expert 
opinion scores is worse when the question is included. 
This analysis was first done using species from both 
coasts (n = 48) in a single analysis. A similar analysis 
was done on subsets of species to evaluate the 
consistency of the questions’ contribution between 
coasts: the east coast only (n = 18), and the west coast 
only (n = 30) and among the major taxonomic groups 

included in the study: molluscs (n = 20), crustaceans 
(n = 10), and tunicates (n = 13). 

Optimization of CMIST 

We attempted to optimize CMIST in three different 
ways. First, we simply removed all the questions 
that did not contribute to accuracy when all species 
were included (identified above) and recalculated 
the CMIST scores. Second, we assigned weights to 
the questions that were retained. In this system the 
score for a species was calculated as: 

∑ ܵ௔ݓ௔௫
௔ୀଵ

ݔ
ൈ
∑ ܵ௕ݓ௕
௬
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ݕ
 

where a refers to a question related to likelihood of 
invasion, x is the number of questions related to 
likelihood of invasion that were retained, b refers to 
a question related to impact of invasion, y is the 
number of questions related to impact of invasion 
that were retained, Sa and Sb are the scores assigned 
to likelihood and impact of invasion questions, 
respectively, and wa and wb are the weights for 
likelihood and impact questions, respectively. We 
found the combination of weights (wa and wb) that 
provided the greatest match between CMIST and expert 
opinion scores, i.e., the combination of weights that 
maximized the R2 between the two set of scores. The 
optimal weights were determined using the solver 
add-on in Microsoft Excel, with starting values of 1 
for the weight of each question. In this analysis, the 
weights were constrained to positive values since the 
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questions whose answers were potentially negatively 
correlated with expert opinion scores were already 
removed. The third optimization technique used the 
same equation and methodologies to calculate the 
scores, but this time all questions were included and 
the optimal weights were allowed to include negative 
values. This permits the contribution by the questions 
for which answers are negatively correlated with 
expert opinion scores (i.e., some of the ones 
removed in the previous scenario). 

Evaluation of optimization procedures 

To determine if the optimization procedures 
improved accuracy, we first compared the relation-
ships between CMIST and expert opinion scores 
using linear regression analysis. This was done for 
1) all questions included, 2) questions removed,  
3) questions removed with weights (positive), and  
4) all questions with weights (positive or negative). 
To evaluate which set of scores best predicted the 
expert opinion data, we calculated the corrected 
Akaike Information Criterion (AICc) for each linear 
regression and used these values to determine the 
likelihood that each technique is the most accurate 
among the set of models tested. 

The three optimization procedures (2–4 as described 
above) were used to calculate independent scores for 
each species using leave-one-out cross validation; 
the optimization was done using all but one species 
and these independent optimized models were used 
to calculate scores for the excluded species. We kept 
track of the proportion of times each question was 
retained (“question removed”) and the weight for 
each question (“questions removed with weights” 
and “all questions with weights”). We then used 
AICc values for these independent models (and the 
original CMIST scores) to determine which provided 
the best fit to the expert opinion scores. 

The CMIST allows for calculations of confidence 
limits surrounding assessment scores as explained in 
Drolet et al. (2015). In brief, it uses probabilities that 
an assessor might have provided a different answer 
to a question (under all possible combinations of score 
and uncertainty) to generate a range of potential scores 
for a species and derive associated 95% confidence 
limits. This procedure was used to evaluate how the 
optimization procedures influence score precision. 
We used a two-way main effect ANOVA with the 
fixed factor Method (4 levels: all questions, questions 
removed, questions removed with weights, and all 
questions with weights) and the random blocking factor 
Species (48 levels). Since the different optimization 
methods return scores on different scales, the depen-
dent variable was the width of confidence limits for 

a species divided by the mean score for a particular 
method. Thus, the Method effect tests for differences 
in proportional uncertainty: uncertainty being a 
proportion of the average scores for a method. 
Significant fixed effects were further evaluated with 
Tukey post-hoc tests (Day and Quinn 1989). 

Results 

Evaluation of question importance 

Approximately half the questions (9 of 17) contribu-
ted positively to the fit between CMIST and expert 
opinion scores when all species were included (i.e., 
positive values for contribution to accuracy in Table 1). 
However, the accuracy of CMIST was greater if the 
remaining eight questions were ignored (i.e., negative 
values for contribution to accuracy in Table 1). With 
few exceptions, the questions related to likelihood of 
invasion contributed consistently to accuracy across 
geographical areas and taxa considered (Table 1). 
For example, the questions pertaining to establishment, 
reproduction, control agents, and anthropogenic dis-
persal contributed positively to accuracy in at least 
four of the six analyses. In contrast, questions about 
arrival, habitat, climate, and natural dispersal only 
contributed positively in one or two of the six analyses. 
The questions pertaining to impacts of invasion 
influenced accuracy in a much less consistent manner, 
with particularly important differences between 
coasts. However, the question pertaining to effects 
on community and ecosystems, and history of 
invasion elsewhere improved accuracy for five of six 
analyses, whereas the question about genetic effects 
was excluded for all analyses (Table 1). 

Optimization of CMIST 

After removing the questions that decreased accuracy 
(when all species were considered), the optimal 
combination of weights ignored three further questions 
(weight of 0; Table 2): Control agents, Impacts on 
populations, and Impacts on communities. Three 
questions appeared to be particularly important (high 
weights; Table 2): requirements for reproduction, 
impact on ecosystems, and history of invasion else-
where. When all questions were considered and the 
optimal weights derived, the weights for likelihood 
of invasion questions tended to correspond to the 
contribution to accuracy (i.e., similar signs between 
values in column 1 Table 1 and column 3 in Table 2), 
but important differences were observed for the impact 
of invasion questions. Again, the questions pertaining 
to requirements for reproduction and history of 
invasion elsewhere were of particular importance (high 
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Table 2. Results of optimization procedures for CMIST. The “questions retained” column shows the proportion of times a question was 
retained during the cross-validation procedure. The other two columns shows the optimal weights derived when all species were included 
and the range of values, in parenthesis, obtained in the cross-validation. Full question formulation can be found in Table S1. 

Question Questions retained Weight for questions retained Weight for all questions  
Likelihood of invasion    
1) Established 1 0.97 (0.43, 1.64) 3.22 (1.92, 7.88) 
2) Arrival 0 na -2.45 (-4.38, 2.12) 
3) Habitat 0 na -1.65 (-7.05, -0.04) 
4) Climate 0 na -3.68 (-5.63, -1.26) 
5) Reproduction 1 1.86 (0.95, 2.33) 4.66 (3.19, 7.86) 
6) Control agents 1 0.00 (0.00, 0.00) 0.21 (-6.98, 2.97) 
7) Natural dispersal 0 na 2.36 (1.72, 3.37) 
8) Anthropogenic dispersal 1 1.08 (0.32, 1.86) 3.85 (1.12, 8.98) 
Impact of invasion    
9) Impact on populations 1 0.00 (0.00, 0.08) 0.79 (-2.50, 5.66) 
10) Impact on communities 1 0.00 (0.00, 0.46) -4.33 (-7.89, 1.19) 
11) Impact on habitat 1 0.45 (0.00, 1.35) 4.01 (0.45, 6.00) 
12) Impact on ecosystems 1 1.93 (1.10, 2.56) 1.47 (-9.56, 6.94) 
13) Diseases and parasites 0 na 2.30 (0.39, 5.45) 
14) Genetic effects 0 na -4.08 (-10.94, -1.61) 
15) Impact on at-risk species 0.02 na 6.02 (4.38, 8.18) 
16) Impact on aquaculture 0.10 na 0.10 (-0.85, 1.88) 
17) Invasive elsewhere 1 2.00 (1.71, 2.48) 5.32 (3.87, 12.15) 

 

weights). However, questions about effects on habitat 
and species at risk were important in this analysis 
but not in the other ones. 

Evaluation of optimization procedures 

There was a gradual increase in accuracy when 
going from 1) all questions, to 2) questions removed, to 
3) questions removed with weights, to 4) all questions 
with weights (Figure 1) when all species were included 
(i.e., non-independent test). This is evidenced by a 
more than two-fold increase in R2 values between 
“all questions” and “all questions with weights” 
(Figure 1). The model with all questions and weights 
was by far the most accurate, with a more than 0.99 
probability of providing the best fit to the expert 
opinion data among the four models considered 
(Table 3). The independent test of the models (cross-
validation procedure) provided very different results. 
The questions that were retained were consistent 
among the different independent tests (Table 2); only 
two questions were not either always retained or 
always rejected. Similarly, the weights for the model 
with questions removed were somewhat consistent 
(small range of values among the independent eva-
luations; Table 2). However, the weights when all 
questions were retained varied substantially. This 
resulted in a gradual decrease in R2 with increasing 
model complexity (Figure 2). Support for the model 
with questions removed was greatest (Table 3), and 
the model with questions removed and weights had 
greater support than the model with all questions. 

Finally, the model with all questions and weights 
had very weak support (Table 3). 

Proportional uncertainty varied among species 
(MS = 0.02, F47, 141 = 4.27, p < 0.001), simply meaning 
that the scores for some species were more uncertain 
than for others, irrespective of the method used. The 
effect of method was also significant (MS = 0.02,  
F3, 141 = 304.05, p < 0.001); proportional uncertainty 
was low and similar for “all questions”, “questions 
removed” and “questions removed with weights”, 
but was much greater for “all questions with weights” 
(Figure 3). 

Discussion 

Screening-level risk assessment (SLRA) tools can 
provide quick and relatively reliable information to 
inform policy and management decisions concerning 
non-indigenous species. Here we evaluated how 
model uncertainty, related to unknown influences of 
factors included in a SLRA tool, affected accuracy 
of CMIST, the first risk assessment tool developed 
explicitly for marine non-indigenous species that are 
usually introduced accidentally. Though the tool 
includes fewer questions than most of its counterparts 
(e.g., 17 for CMIST vs 49 for WRA-derivatives) and 
the questions were carefully selected to capture 
factors affecting both likelihood of invasion and 
impact of invasion, many of the questions did not 
improve or even decreased model accuracy. This 
finding is similar to that of Koop et al. (2012) who 
found that the answers  to approximately half the 
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Figure 1. Relationship between expert opinion 
scores and assessment scores for CMIST with   
A) All questions, B) Questions removed,             
C) Questions removed with weights, and            
D) All questions with weights. Closed circles 
show species from the Canadian west coast and 
open circles are east coast species. Line shows 
best fit regression with associated R2 values. 

Table 3. Evaluation of fit of different models to the expert opinion scores for non-indigenous marine invertebrate species in Canadian 
coastal waters. Results of the non-independent (All species) and independent (Cross-validation) tests are presented. Likelihood is the 
probability that a model is the best predictor among the models evaluated. 

 AICc dAICc AICc weight Likelihood 
All species     
All questions -117.89 23.00 1.01E-5 <0.001 
Questions removed -127.09 13.80 1.00E-3 0.001 
Questions removed with weights -129.62 11.27 3.56E-3 0.007 
All questions with weights -140.89 0.00 1.00 0.99 
     
Cross-validation     
All questions -117.89 6.68 0.04 0.03 
Questions removed -124.57 0.00 1.00 0.80 
Questions removed with weights -121.43 3.13 0.21 0.17 
All questions with weights -113.52 11.05 0.004 0.003 

 

questions in the WRA were not statistically related 
to pest status of plants in the United States. This does 
not necessarily mean that these questions pertain to 
factors unrelated to risk, but simply implies a lack of 
relationship between the answers and the data used 
to test tools. For example, Weber et al. (2009) found 
that many questions did not contribute to variation in 
scores because most species received the same answer. 
This may explain why current population status 
(establishment) did not contribute to accuracy for the 
east coast species; all species evaluated on this coast 

have established populations, whereas some species 
from the west coast have been observed sporadically 
with no known established population. Similarly, all 
tunicate species included have a history of invasion 
elsewhere, explaining why this question was not 
influential for this taxon. Nonetheless, the results of 
this study suggest that some of the questions included 
in CMIST did not contribute to model accuracy. 

Current risk assessment tools either assign an 
equal weight to each question or weights that are based 
on perceived importance (most WRA-derivatives) and, 
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in one case, on empirical importance; Koop et al. 
(2012) assigned higher weights to questions whose 
answers were highly statistically related to pest status. 
However, for a given data set, each factor has 
a  unique influence; the R2 maximization procedure 
presented in this study allows empirical determi-
nation of the combination of weights that maximizes 
accuracy. Deriving weights after the questions that 
did not contribute to accuracy were removed resulted 
in exclusion of three more questions (i.e., optimal 
weight of 0). This is probably linked to correlation 
in answers to these questions (collinearity). For 
example, species with an overall high ecological 
impact will have an impact on populations, commu-
nities, and ecosystems. This would explain why 
effect on ecosystems alone is sufficient to obtain 
maximum accuracy. Overall, when all species were 
included, model accuracy increased with increasing 
level of refinement. Maximum R2 was obtained when 
all questions were included and weighting allowed 
negative values to permit contribution of questions 
whose answers are negatively linked to expert 
opinion (but see below for independent predictions). 

While it is possible to optimize accuracy for any 
particular dataset using the methods we presented, it 
is unclear if the results are consistent enough to obtain 
more accurate independent predictions. In general, 
the contribution of questions to accuracy was similar 
among ecoregions and taxonomic groups. In addition, 
the cross validation procedure retained very similar 
models when only removing questions that did not 
increase accuracy. Therefore, it appears that the 
influence of questions is consistent enough among 
species to safely remove them from the tool, which 
results in a notable gain in accuracy, as noted 
elsewhere. Gordon et al. (2008) found that the 
classification of plants as weeds was more accurate 
when only one question (about history of invasion 
elsewhere) was used compared to when all questions 
(49 in total) are considered. Caley and Kuhnert (2006) 
derived a classification tree (based on only four of 
the WRA questions) with similar accuracy to the 
original WRA, while Weber et al. (2009) used various 
approaches to show that much reduced collections of 
questions (4 or 5) yielded similar outcomes to the 
complete WRA for 1844 species. Koop et al. (2012) 
developed a more accurate tool after removing 
several WRA questions. Thus, it appears that many 
tools are over-parameterized and many questions 
simply add noise and mask the discriminatory power 
of a few important ones. 

However, further model refinement (by adding 
weights) did not improve independent predictions. It 
also increased uncertainty in the case where all 
questions were included and negative weighting was 

 
Figure 2. Relationship between expert opinion scores and 
independent assessment scores for CMIST with A) Questions 
removed, B) Questions removed with weights, and C) All 
questions with weights. Closed circles show species from the 
Canadian west coast and open circles are east coast species. Line 
shows best fit regression with associated R2 values. 

allowed. This might be related to the relatively small 
number of species included in the study; each species 
has a high relative influence (leverage) on the optimal 
weights, thus the predictions based on the rest of the 
species are less accurate. This is evidenced by the high 
variability in cross-validated weights, in particular 
when all questions are included and weights are 
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allowed to be negative. This should be tested with larger 
data sets (e.g., several WRA tests include hundreds 
of species) to see if it would result in stable weights, 
and ultimately how this could influence accuracy. 

Ecological risk assessments are rarely evaluated  
a posteriori (Gibbs 2011). In the realm of non-
indigenous species, this would involve evaluating a 
large number of species, waiting for one to arrive in 
the assessment area, and when detected, comparing 
the outcome with assessment results. This is highly 
impractical; the only other option to evaluate scree-
ning procedures is to assess species known to have 
been introduced into an area after the fact. This 
bypasses the arrival process since all species have 
arrived at some point, even potentially more than 
once. It is therefore not surprising that the question 
related to frequency of arrivals turned out not to 
contribute to accuracy here. However, there is conside-
rable evidence that propagule pressure is an important 
determinant of probability of establishment (Forsyth 
and Duncan 2001; Lockwood et al. 2005; Colautti et 
al. 2006; Simberloff 2009; Britton and Gozlan 2013). 
Future optimized risk assessment tools should still 
include questions related to propagule pressure, even 
though the current test did not find it significant. 
This is particularly true for risk assessment tools 
used in the screening-level context, the purpose of 
which is to identify species not present in an area 
that pose the greatest risk to it. 

In conclusion, we found that the original version 
of CMIST was over-parameterized and several 
questions could be ignored to improve accuracy. 
However, what questions to retain should be a trade-
off between accuracy and other considerations. For 
example, resource management or conservation 
agencies might want to keep questions about effects 
on aquaculture and at-risk species (even though they 
did not improve accuracy in the current dataset) to 
adapt scores in a way to be consistent with their 
mandate. The results of our analyses are dependent 
on the species we used; it is possible that the outcome 
of future incursions by non-indigenous species will 
be influenced by factors other than those of past 
introductions, thus an eliminated question might 
represent an important predictor in the future. Also, 
the techniques presented result in tools optimized to 
expert opinions of risk; a more objective metric 
might be desired, but quantification of impacts of 
non-indigenous species is a complex task (Barney et 
al. 2013; Kumschick et al. 2015; Ojaveer et al. 
2015). Based on these results and those of others 
(Caley and Kuhnert 2006; Gordon et al. 2008; Koop 
et al. 2012), we would recommend an in-depth 
examination of the importance of questions included 

 

Figure 3. Influence of optimization methods of CMIST on the 
adjusted 95% confidence limits around species assessment scores. 
Error bars show standard errors and columns not sharing a 
common letter are significantly different (Tukey post hoc tests). 

in the commonly used SLRA tools. Eliminating 
questions consistently found to be unimportant would 
make these tools more accurate and faster and easier 
to use. While independent scores were not improved 
by addition of weights here, this technique seems 
promising as it allows the contribution of each question 
to be adjusted to its real influence. If weights 
derived from large data sets are consistent enough, 
the technique has the potential to greatly improve 
risk assessment tools for non-indigenous species. 
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