**Hemigrapsus takanoi** Asakura and Watanabe, 2005 (Crustacea: Decapoda: Brachyura: Grapoidea): first records of the brush-clawed shore crab from Great Britain

Christine A. Wood¹*, John D.D. Bishop¹, Clare J. Davies², Emma L. Deluca³, Josh C. Hatton³, Roger J.H. Herbert² and Paul F. Clark⁴

¹The Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, Devon, UK
²Centre for Conservation Ecology and Environmental Change, Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Fern Barrow, Poole, Dorset, BH12 5BB, UK
³Marine Ecological Surveys Ltd., 3 Palace Yard Mews, Bath, BA1 2NH, UK
⁴Invertebrates Division, Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK

*Corresponding author

E-mail: cwo@mba.ac.uk (CAW), jbis@mba.ac.uk (JDDB), cdavies@bournemouth.ac.uk (CJD), emma.delduca@mesltd.co (ELD), josh.hatton@mesltd.co (JCH), RHerbert@bournemouth.ac.uk (RJHH), p.clark@nhm.ac.uk (PFC)

Received: 30 October 2014 / Accepted: 26 January 2015 / Published online: 21 February 2015

**Handling editor:** Amy Fowler

**Abstract**

The brush-clawed shore crab is reported from the River Medway, Kent and the River Colne, Essex, England. These represent the first records of *Hemigrapsus takanoi* Asakura and Watanabe, 2005 from Great Britain. If *H. takanoi* becomes established in GB, it may pose a threat to populations of the native shore crab *Carcinus maenas*.

**Key words:** brush-clawed shore crab, invasive brachyuran species, River Medway, southern England, River Colne, Brightlingsea

**Introduction**

The varunine crab *Hemigrapsus takanoi* Asakura and Watanabe, 2005 is native to Northwest Pacific coastlines, occurring intertidally. *Hemigrapsus takanoi* was named and formally distinguished from the Northwest Pacific species *H. penicillatus* (de Haan, 1835) only in 2005 and, in Europe, it was initially identified as *H. penicillatus* (Gollasch 1996, 1999; Noël et al. 1997; d’Udekem d’Acoz 1998, 1999). Around this time, Masatsugu Takano recognised two sympatric forms of *H. penicillatus* (Gollasch 1996, 1999; Noël et al. 1997; d’Udekem d’Acoz 1998, 1999). Around this time, Masatsugu Takano recognised two sympatric forms of *H. penicillatus* in Japan, with statistically different-sized setal patches on the male chelae: form I possessed smaller setal patches than form II (Takano et al. 1997, 1999). Seeking clarification of the identity of European populations, Cédric d’Udekem d’Acoz and Faasse 2002 sent Bay of Biscay *Hemigrapsus* material to Masatsugu Takano, who identified these as form II (Takano et al. 1997). Further examination by Cédric d’Udekem d’Acoz (2004 pers. comm. to Asakura and Watanabe 2005: 287) of abundant material collected from France and the Netherlands revealed that all specimens lacked dark spots on the abdominal somites, further confirming European *H. penicillatus* as form II (Takano et al. 1997, 1999). Asakura and Watanabe (2005) named form II as a new species, *Hemigrapsus takanoi*, and distinguished it from *H. penicillatus* by the relatively larger setal patches on the male chelae of *H. takanoi* (Asakura and Watanabe 2005: Figure 3A-D cf. Figure 9A-D). Furthermore, the coloured spots on *H. takanoi* are comparatively small where present (Asakura and Watanabe 2005: Figures 2A; 3A, C, D; 7A, B cf. Figures 8; 9A, E; 10) and, unlike *H. penicillatus*, are absent from the abdomen (Asakura and Watanabe 2005: Figures 2C; 7B cf. Figures 8; 10B), and the first male pleopods differ between the species (Asakura and Watanabe 2005: Figure 6A, B cf. Figure 6C, D).
Figure 1. Showing locations of first Great Britain records of Hemigrapsus takanoi.

While visiting the Natural History Museum, London, Asakura examined and reetermined a male and female collected in 1996 by P.Y. Nøl from the French coast as *H. takanoi*. Yamasaki et al. (2011) were able to distinguish between *H. penicillatus* and *H. takanoi* based on sequence differences within the 16S rRNA region of mitochondrial DNA; their analysis of the sequence from one specimen collected in France as *H. penicillatus* (GenBank accession number AJ278835) re-identified it as *H. takanoi*. Also Markert et al. (2014) have recently confirmed, by molecular analysis, that the Asian brush-clawed crabs in the Wadden Sea are *H. takanoi*.

During a 4-year period (1992–1995), the ballast water, tank sediments, and hull fouling of 131 ships recently berthed at German ports were sampled and examined as part of a study on German shipping (Gollasch 1996; 1999). On 14 August 1993, six specimens (2 male, 4 female) of *H. takanoi* (as *H. penicillatus*) were collected in hull samples from the car-carrier *SPICA* berthed in Bremerhaven. After the journey from Japan into European waters, this vessel had docked for a routine inspection and coating with antifouling paint (Gollasch 1999) later postulated that in 1993 the car-carrier *SPICA* passed the French coast on its passage to Bremerhaven, unintentionally transporting perhaps “several hundreds of specimens of *H. penicillatus*” and assumed these crabs either dropped off or were displaced from the hull in sufficient numbers to generate a new population. Whether this was the case is uncertain, but Nøl et al. (1997) reported that *H. takanoi* (as *H. penicillatus*) had spread rapidly and by December 1996 was present from Laredo, Spain (43°25′N, 003°23′W) north to Fromentine, France (46°53′N, 002°09′W), a distance of ca. 700 km, in sheltered areas of the mid-littoral zone (Nøl et al. 1997, Figure 2). *Hemigrapsus takanoi* continued to spread along the NW coast of Europe with Dauvin et al. (2009, Figure 5) mapping its distribution with data up until July 2008 as far as the eastern Wadden Sea, Germany. Most recently however, Landschoff et al. (2013, Figure 1) record the brush-clawed shore crab as far north as Rømø Island, Denmark, but without details. Confirmation was obtained by email (dated 9 September 2014 to PFC from Jonas Geburzi, Zoologisches Museum, Universität zu Kiel), stating that on 15 March 2012, Karsten Reise (AWI Wadden Sea Station in List on Sylt) found numerous specimens in Havneby harbour, Rømø Island but that the species was not recorded at this locality in 2011. In 18 years, *H. takanoi* has therefore dispersed around the NW coastline of continental Europe a distance of ca. 2200km.

The purpose of this current paper was to note the first GB records of *H. takanoi* from the River Medway, Kent, England, and from the River Colne, Essex, England, see Figure 1.
Hemigrapsus takanoi from North Kent and Essex, England

Figure 2. Hemigrapsus takanoi Asakura and Watanabe, 2005, collected from River Medway, 15th August 2014, male, a. dorsal view; b. ventral view; c. anterior view; d. frontal view of chelae showing setal patches. Arrows indicate position of suborbital stridulation ridge. Photographs taken by Phil Hurst, NHM Photo Unit.

Material examined:
Specimen A – Figure 2a-d, 1♂, carapace width 15.7mm, Gillingham Marina, 51°23.84’N 000°33.62’E, River Medway, Kent, England, collected by Christine Wood, John Bishop and Anna Yunnie on 5 August 2014, NHMUK reg. 2015.2779, during surveys of south and south east coast marinas for non-native species. The crab was found on a rope hanging from a floating pontoon within the semi-enclosed marina basin. Adjacent to the basin is an area of tidal mudflats. The salinity was 28.0 and the water temperature 21.6°C at the surface at the time of collection. No other crabs were recorded. The specimen was confirmed as H. takanoi by Paul Clark on 16 August 2014.

Specimens B and C – 1♂, carapace width 6.53mm; 1♀, carapace width 15.27mm, not egg-bearing, Colne estuary, Brightlingsea, Essex, England, 51°48.35’N, 001°01.17’E, collected by Clare Davies, 7 May 2013, NHMUK reg. 2015.2780-27781. These crabs were found in preserved samples taken from a wild Pacific oyster reef (Crassostrea gigas) growing on tidal mudflats in a lower estuarine environment, see Figure 3. The specimens were confirmed as H. takanoi by Paul Clark on 27 November 2014. Of the 15 samples analysed one contained the two H. takanoi and a single Carcinus maenas. In total, 11 samples contained C. maenas with abundances between 1 and 8.

Hemigrapsus takanoi can be distinguished from H. sanguineus (de Haan, 1835), the other NW Pacific Hemigrapsus species established in NW Europe, by possessing a suborbital stridulation ridge (Figure 2b, c) divided into three unequal parts (vs. a continuous finely striated ridge in H. sanguineus) and setal patches (Figure 2d) at the base of the joint between the propodus and dactylus on the male cheliped (vs. a fleshy vesicle at that site).

Discussion
Recently Seeley et al. (2015) reported two GB sightings of H. sanguineus from Glamorgan, south Wales, 2 May 2014 and Kent, southern England, 14 May 2014. Now H. takanoi has been reported from a Medway marina in North Kent, 5 August 2014, and from an estuary in Essex, 7 May 2013. Minchin et al. (2013) list 90 alien species in British brackish and marine waters; 35 originated from the North Pacific (particularly the North-West Pacific) of which 82% have become established in British waters. The two Hemigrapsus crab
species discovered in 2014 add to the NW Pacific component of the alien marine fauna in GB. Roy et al. (2014) considered which invasive alien species were most likely to impact on native biodiversity but were not yet established in the wild in Great Britain. *Hemigrapsus sanguineus* and *H. takanoi* were both included in the top ten species as posing a ‘high risk’ (Roy et al. 2014, Table 2) to arrive in the next ten years.

Considering its current NW European distribution, these UK records of *H. takanoi* are not a great surprise. However, it is only possible to speculate as to the introduction vector(s) of these new arrivals. The nearest established populations of *H. takanoi* are along the continental coast of the English Channel and North Sea from Boulogne-sur-mer, France to Knokke Heist, Belgium (Dauvin et al. 2009) on the coastline opposite to where the GB specimens were found in Kent and Essex. However according to Dauvin and Delhay (2010, Figure 1) larval dispersal is an unlikely vector as surface currents would tend to carry the larvae north-westwards towards the Netherlands. Transport by shipping, either as hull fouling or in ballast water is a distinct possibility, as is transfer with commercial oysters. Genetic profiling will be needed and hydrographic movements investigated to infer the source(s) of any GB populations.

The native habitat of *H. takanoi* ranges from cold-temperate to warm-temperate (Gollasch 1999). Its native habitats include muddy and rocky shores and it can be found in sheltered estuaries and port areas. The juvenile and adult stages are tolerant of salinities as low as 9 (Gittenberger et al. 2010; Soors et al. 2010), although the larvae require higher salinity conditions (Mingkid et al. 2006). The habitats where the crabs were found in GB match these conditions. Both are estuarine environments with soft sediments. At Gillingham shelter is provided by the marina basin, whereas at Brightlingsea the oyster reef serves this function. The escape of the Pacific oyster *C. gigas* from commercial oyster beds is leading to the establishment of wild reefs along parts of the southern GB coast (Herbert et al. 2012). This ecosystem engineering has created areas of hard substrate and more heterogeneous habitats, which can provide spatial refuges against predators for small crabs such as *H. takanoi* (van den Brink et al. 2012). There appear to be no environmental conditions preventing *H. takanoi* from becoming established around the UK and Irish coastlines in the future.

If *H. takanoi* becomes established in GB, it may pose a threat to populations of the native shore crab *Carcinus maenas*. According to Dauvin et al. (2009), d’Udekem d’Acoz reported a drastic reduction in the number of juvenile *C. maenas* on some Dutch shores with high densities of *H. takanoi*. Dauvin et al. (2009) also observed that *H. takanoi* dominated *C. maenas* in Dunkirk harbour.
Acknowledgements

Financial support for surveying S and SE coast marinas in England was provided by Natural England and the Bromley Trust. We are grateful to Gillingham Marina for allowing access, and to the third member of our survey team, A. Yunnie. C. Davies is supervised by R. Herbert and R. Stillman and acknowledges funding from Natural England as part of a PhD project. We would also like to thank C. Griffiths for producing the map and the four referees for their useful comments and suggestions.

References


Mingkid WM, Yokota M, Watanabe S (2006) Salinity tolerance of larvae in the penicillate crab Hemigrapsus takanoi (Decapoda, Brachyura, Grapsidae). La Mer 44: 17–21


