OCCURRENCE OF THE ASIATIC NEMATODE ANGUILLICOLA CRASSUS IN EUROPEAN EEL FROM THE ŁEBSKO LAGOON (CENTRAL COAST, POLAND)

JOLANTA MOROZIŃSKA-GOGOL

Division of Ecology and Protection of the Sea
Pomeranian Pedagogical Academy
ul. Arciszewskiego 22 b, 76-200 Słupsk, Poland
e-mail: jolamorozinska@poczta.onet.pl

Key words: Anguillicola crassus, Nematoda, parasite, Anguilla anguilla, Łebsko

Abstract

The Łebsko Lagoon (regarded locally as a coastal lake) is situated on the central Polish coast and is connected with the Baltic Sea. The occurrence of A. crassus in eels from Łebsko was studied. Nearly 84% of the examined eels were infected with nematodes at a mean intensity of 7.6 individuals. The level of infection has increased in recent years from 54% in 2001 to 100% in 2003, which is confirmation of the successful spread of A. crassus. The nematodes were transmitted to the eels by many species of crustacean (intermediate host) and other invertebrates and fish (paratenic host) through the food web.
INTRODUCTION

Anguillicola crassus Kuwahara, Niimi and Itagaki, 1974 is a natural parasitic nematode of the swim bladder of the Japanese eel, *Anguilla japonica*. *A. crassus* was introduced from the Southeast Asia to Europe in the 1980s in live *A. japonica* imported for consumption and aquaculture.

Once introduced to the European ecosystem, *A. crassus* spread rapidly among local eel populations. Young eels became infected by feeding on invertebrates, while older eel were also infected by fish. The life cycle of this nematode includes one intermediate host – predominantly copepods and ostracods (De Charleroy *et al.* 1990, Kennedy and Fitch 1990, Moravec and Konecny 1994) and paratenic hosts such as other invertebrates, aquatic insects (Moravec 1996, Moravec and Skorikova 1998, Palikova and Navratil 2001) and many species of fish (De Charleroy *et al.* 1990, Haenen and Van Banning 1990, Thomas and Ollevier 1992a, Höglund and Thomas 1992, Moravec and Konecny 1994, Rolbiecki 2002).

This parasite is normally found in freshwater and brackish water basins (Haenen and Van Banning 1990, Kennedy and Fitch 1990, Höglund and Thomas 1992).

The current study focuses on the nematode occurrence and parameters of infection in eels from the Łębsko Lagoon.

STUDY AREA

Łębsko Lagoon (regarded locally as a coastal lake) is located on the central coast of Poland within the Słowiński National Park, which was designated by UNESCO in 1977 as part of the World Network of Biosphere Reserves.

With an area of 7142 ha, the Łębsko Lagoon is the largest coastal lake in Poland. The lagoon is a shallow water body (max. depth - 6.3 m, average depth – 1.6 m), surrounded by reeds and sedges, which provide good shelter for a rich variety of migratory and breeding water birds. The reservoir is separated from the Baltic Sea by a narrow strip of land (Mierzeja Łębska) and is connected with
Occurrence of the Asiatic nematode *Anguillicola crassus* in European eel...

the sea by the Łeba River. The lagoon is situated only 30 cm above sea level, and inflows of seawater occur when the winds blow from the north and northwest.

Many fish species, both freshwater and marine, are found here, and the following are commercially exploited in Łębsko: bream *Abramis brama* (L.); roach *Rutilus rutilus* (L.); tench *Tinca tinca* (L.); crucian carp *Carassius carassius* (L.); German carp *Carasius auratus gibelio* (Bloch, 1783); rudd *Scardinius erythrophthalmus* (L.); perch *Perca fluviatilis* (L.); eel *Anguilla anguilla* (L.); zander *Stizostedion lucioperca* (L.); pike *Esox lucius* (L.); various salmonids.

MATERIAL AND METHODS

The eels were caught by fishermen in Łębsko Lagoon from July 2001 to July 2004. Fishing for this species is ongoing.

In total, 62 eels were examined for anguillicolosis. All of the fish were weighed (range 110.3-992.6 g) and measured (length range 40-81 cm).

The swim bladders were removed and dissected. Nematodes were collected from the lumen and wall of the swim bladder under a dissecting microscope. The largest specimens were visible with the naked eye. The parasites recovered were fixed and preserved using methods commonly applied with nematodes (Bylund *et al.* 1980).

![Fig. 1. Changes in the prevalence and mean intensity of *A. crassus* infections in eel from Łębsko Lagoon from 2001 to 2004.](image-url)
RESULTS

A. crassus were found throughout the investigations. Nearly 84% of the examined eels were infected with nematodes at a mean intensity of 7.63 individuals (range 1-27 indiv.). Changes in the infection level were observed. The prevalence of infection increased from 2001 to 2004 (Fig. 1). In 2001, nearly 54% of the eels were infected at a mean intensity of 6.4 individuals (range 1-13 indiv.). In 2002, 83% were infected at an intensity of 5.3 indiv. (range 1-20 indiv.), while in 2003 and 2004 the infection prevalence increased to 100% of the eels at mean intensities of 7.5 and 3.2 indiv., respectively (ranges 1-27 and 1-15 indiv.).

Generally, prevalence increased with eel length from 75 to 91%, but the highest intensity was observed in the medium length class at 7.4 indiv. (Fig. 2).

DISCUSSION

The eel is an important component of estuarine and freshwater ecosystems and a significant commercial fish species. Eels feed on invertebrates, mostly insect larvae and crustaceans, while the largest specimens also feed on fish (Brylińska 1991). Since A. crassus were found only in eels in Łębsko, invertebrates were probably the principal infection link. Fish were rarely the
cause of infection and then only in the Baltic (Höglund and Thomas 1992, Reimer et al. 1994).

As in the present study, Sures and Streit (2001) observed a higher prevalence of infection with A. crassus in eels from the River Rhine than previously. Würtz et al. (1998) and Sures et al. (1999) reported prevalence rates that ranged from 60 to 80%, and Sures and Streit (2001) found A. crassus in 90% of the eels. Investigations in the River Rhine and Łebsko Lagoon confirm that the spread of A. crassus across European ecosystems is rapid and successful and continues today.

Thomas and Ollevier (1992b) reported that were no seasonal changes in the prevalence or mean intensity of A. crassus in European eel. It is possible that eels could become infected throughout the year. Nematodes were also collected in all seasons in Łebsko Lagoon, but due to the small sample sizes, seasonal changes in the parameters of infection could not be studied.

A. crassus was also noted in the fry of European eel. Pilecka – Rapacz (2000) observed that 33-40% of the fry (length range 10.3-32 cm) from the Pomeranian rivers Wieprza and Rega were infected. The smallest infected eel was 13.2 cm in length, and the infection level increased with length. Lefebvre et al. (2002) suggested that medium sized and the largest eels are more heavily infected. This trend was also observed in Łebsko Lagoon.

CONCLUSIONS

- The spread of A. crassus in the Baltic and coastal lakes is facilitated by the absence of native swim bladder parasites and the broad specificity of A. crassus, which has many intermediate and paratenic host species. Nematodes are transmitted to the eels via many species of invertebrates and fish through the food web.
- The level of infection increased in recent years from 54% to 100%; this is confirmation of the successful spread of A. crassus.
- The prevalence of infection increased with eel body length.

REFERENCES

Pilecka-Rapacz M., 2000, Nieśmien Anguillicola crassus u narybku węgorza Anguilla anguilla (L.), [Nematode Anguillicola crassus in fry of eel Anguilla anguilla (L.)], XVIII Zjazd Hydrobiologów Polskich w Białymstoku, Materiały Zjazdowe, 4-8 września, Białystok, 205.
Occurrence of the Asiatic nematode Anguillicola crassus in European eel...

